Showing 10 of 10000 results
We report a measurement of high-p_T inclusive pi^0, eta, and direct photon production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi^0 -> gamma gamma were detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross section measurement by STAR is also presented, the signal was extracted statistically by subtracting the pi^0, eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading order perturbative QCD calculations.
Cross sections for inclusive $\pi^0$ production in p + p and d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The solid lines correspond to NLO pQCD calculations. The measured $\pi^0$ cross sections were not corrected for feed-down contributions $\eta$ -> 3$\pi^0$, $\eta$ -> $\pi^+\pi^-\pi^0$, and $K_S^0$ -> $\pi^0\pi^0$, which were expected to be negligible. Normalization uncertainties of 11.7% for p+p and 5.3% for d+Au are not shown.
The $\eta/\pi^0$ ratio measured in p + p collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.
The $\eta/\pi^0$ ratio measured in d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.
Nuclear modification factor $R_{dA}$ for $\pi^0$, d + Au, compared to the STAR $\pi^{+-}$ [23,24] and PHENIX $\pi^0$ measurements [27,28]. Nucleon-nucleon inelastic cross section $\sigma^{NN}$ = 42 mb and expected number of collisions $<N_{coll}>$ = 7.5 +- 0.4 from Glauber model. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties. Normalization uncertainty of 14.0% indicated by a shaded band around unity.
Nuclear modification factor $R_{dA}$ for eta, d + Au, compared to PHENIX $\eta$ measurements [27,28]. Nucleon-nucleon inelastic cross section $\sigma^{NN}$ = 42 mb and expected number of collisions $<N_{coll}>$ = 7.5 +- 0.4 from Glauber model. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties. Normalization uncertainty of 14.0% indicated by a shaded band around unity.
Nuclear modification factor $R_{CP}$ for $\pi^0$ measured in d + Au collisions, compared to STAR $\pi^{+-}$ measurements [24]. Peripheral d + Au collisions were used where $R_{CP}$ = ratio of particle production in 40-100% centrality (P) events and 0-20% centrality (C) events. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties. Normalization uncertainty of 11.0% indicated by a shaded band around unity.
Direct photon yield in p + p collisions at $\sqrt{s_{NN}}$ = 200 GeV in terms of the double ration $R_{\gamma}$. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties. The curves correspond to NLO pQCD calculations of the differential cross sections for direct photon [68] and $\pi^0$ [52] production in p + p collisions for different factorization scales $\mu$ (the upper pQCD curve corresponds to $\mu$ = $p_T$/2). The upper limit of the fractional neutral hadron contamination $C_0$ is shown as the shaded band at $R_{\gamma}$ = 0.
Direct photon yield in d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in terms of the double ration $R_{\gamma}$. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties. The curves correspond to NLO pQCD calculations of the differential cross sections for direct photon [68] and $\pi^0$ [52] production in p + p collisions for different factorization scales $\mu$ (the upper pQCD curve corresponds to $\mu$ = $p_T$/2). The upper limit of the fractional neutral hadron contamination $C_0$ is shown as the shaded band at $R_{\gamma}$ = 0.
Cross sections for direct photon production at midrapidity in p + p and d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurement [29] and to the NLO pQCD calculation [68], which was scaled with $<T_{dA}>$ [Eq. (23)] in case of d + Au collisions. The error bars are statistical the shaded bands are $p_T$-correlated systematic uncertainties. The arrows correspond to the 95% confidence limits, as defined in the text. Normalization uncertainties of 11.7% for p+p and 5.3% for d+Au are not shown. Separate columns in the table show upper 95% confidence limits. The 95% confidence limits for the cross section are used when $R_{\gamma}$ did not correspond to a significant direct photon signal, assuming that the statistical and systematic errors both followed a Gaussian distribution, and using the fact that $R_{\gamma}\geq 1$ by definition.
We report the first three-particle coincidence measurement in pseudorapidity ($\Delta\eta$) between a high transverse momentum ($p_{\perp}$) trigger particle and two lower $p_{\perp}$ associated particles within azimuth $\mid$$\Delta\phi$$\mid$$<$0.7 in $\sqrt{{\it s}_{NN}}$ = 200 GeV $d$+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jet-like component and the ridge (long-range $\Delta\eta$ correlation). The results indicate that the particles from the ridge are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves event-by-event. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jet-like component.
Correlated hadron distribution in ∆φ(|η|<1 with a high-p⊥trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3GeV/c. The ZYA1-normalized flow background is shown by the curve.
Correlated hadron distribution ∆η(|∆φ|<0.7) with a high-p⊥ trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/c and 1<p(a)⊥<3GeV/c. The ∆η distributions are background subtracted and corrected for ∆η acceptance and are for like and unlike-sign pairs separately. The curves in are Gaussian fits. Errors are statistical.
Background-subtracted charge-independent (AAT ) correlated hadron pair density in minimum bias d+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.033 for d+Au respectively.
Background-subtracted charge-independent (AAT ) correlated hadron pair density in 40-80% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.058 for Au+Au respectively..
Background-subtracted charge-independent (AAT ) correlated hadron pair density in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.084 for Au+Au respectively..
The average correlated hadron pair density per trigger particle as a function of R for all charges in minimum 0-12% Au+Au collision. The average〈ˆP〉for AAT as a function of R = $\sqrt{∆η21+ ∆η22}$. The average density is peaked at R∼0 and decreases with R for all systems. In 0-12% Au+Au collisions, the average denstiy drops more slowly andbecomes approximately constant aboveR>1, indicatingthe presence of the ridge.
The average correlated hadron pair density per trigger particle as a function of R for all charges in minimum 40-80% Au+Au collision. The average〈ˆP〉for AAT as a function of R = $\sqrt{∆η21+ ∆η22}$. The average density is peaked at R∼0 and decreases with R for all systems. For 40-80% Au+Au collisions the average density at R>1 is consistent with zero, indicating no ridge contribution
The average correlated hadron pair density per trigger particle as a function of R for all charges in minimum d+Au collision. The average〈ˆP〉for AAT as a function of R = $\sqrt{∆η21+ ∆η22}$. The average density is peaked at R∼0 and decreases with R for all systems. For d+Au collisions the average density at R>1 is consistent with zero, indicating no ridge contribution
Radial dependence of average 3-particle correlation pair density for 0-12% Au+Au (like-sign triplets) data. The results are shown in Fig. 3(b) Indeed, no jet-like component is apparent in A^±A^±T^±.The A^±A^±T^∓ result contains both jet-like and ridge components.
Radial dependence of average 3-particle correlation pair density for 40-80% Au+Au (like-sign triplets) data. The contribution from other charge combinations, namely A^±A^∓ T^±, are simply the difference between AAT in Fig.3(a) and (A^±A^±T^± + A^±A^± T^∓) in Fig. 3(b). We found this to be equal to twice the A^±A^± T^∓contribution within errors.
Radial dependence of average 3-particle correlation pair density for d+Au (AAT) data. We expect the ridge contributions in the correlated pair density to be the same in all charge combinations. We verified this for large ∆η correlatedpair densities within our current statistics, as can be seen from Fig. 3(b). Therefore the total ridge particle pair density (ˆPrr) can be obtained as four times A^±A^±T^±. The remaining jet-like signal, the sum of jet-like correlated particle pairs (ˆPjj) and cross pairs of a jet-like and a ridge particle (ˆPjr), can then be obtained by subtracting the total ridge from AAT.
for same-sign associated particles (A^\pm A^\pm T^\pm and A^\pm A^\pm T^\mp) in 0-12% Au+Au collisions Systematic uncertainties are shown in the shaded boxes due to background normalization and in the solid curves due to flow.
The R dependence of the average〈ˆPrr〉and〈ˆPjj〉+〈ˆPjr〉in 0-12% Au+Au collisions.The ridge pair density is consistent with a constant 60.14±0.02 (χ2/ndf=5.8/7). Gaussian fits indicate a best fit value σ = 2.1 (χ2/ndf=4.8/6, solid curve) and σ >1.4 (dashed curve) with 84% confidence level. On the otherhand, the jet-like component is narrow with a Gaussianσ=0.34+0.13−0.09(χ2/ndf=0.8/6, dominated by statistical errors), comparing well to those from the correlated single hadron density.
The average correlated hadron pair density per trigger particle in 0-12% Au+Au collisions for the jet-like andridge components as a function of R. The solid curves are Gaussian fits. The dashed curve is a Gaussian fit with a fixed σ=1.4 to the ridge data. The systematic uncertainities on the ridge data are shown in shaded boxes due to background normalization and in open boxes due to flow.
The R dependence of the average in 0-12% Au+Au collisions.for the ridge as a function of ξ within R<1.4. The solid curves are Gaussian fits. To investigate possible structures in the ridge, we show in Fig. 4(b) the average ridge particle pair density as a function of ξ = arctan(∆η2/∆η1) within R<1.4. The data are consistent with a uniform distribution in ξ(χ2/ndf=1.7/7). This suggests that the ridge particles are uncorrelated in ∆η not only with the trigger particle but also between themselves. In other words,the ridge appears to be uniform in ∆η event-by-event.
Charged-particle spectra associated with direct photon ($\gamma_{dir} $) and $\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\gamma_{dir}$ and $\pi^0$. Assuming no associated charged particles in the $\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\gamma_{frag}$), the associated charged-particle yields opposite to $\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\gamma_{dir}$ and $\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\gamma_{dir}$ and $\pi^0$, and independent of the $\gamma_{dir}$ energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.
The $z_{T}$ dependence of $\pi^{0}-h^{\pm}$ near side and away-side associated particle yields. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.
The $z_{T}$ dependence of away-side associated-particle yields for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.
The $z_{T}$ dependence $I_{AA}$ for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.
$I_{AA}$ as a function of $p_{T}$ for $\gamma_{dir}$ triggers, measured in 0-10% Au+Au collisions. The associated charged particles have $z_{T} = 0.4-0.9$. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.
We report the measurement of the transverse momentum dependence of inclusive J/psi polarization in p+p collisions at sqrt(s)=200 GeV performed by the PHENIX Experiment at RHIC. The polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for p_T < 5 GeV/c and |y| < 0.35. The J/psi polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models.
$J/\psi$ yield times dielectron branching ratio ($B$) after detector acceptance and efficiency corrections for the real data with $A$ = 28.7 $\pm$ 1.0 nb/GeV/$c$, $b$ = 3.41 $\pm$ 0.21 GeV/$c$, and $n$ = 4.6 $\pm$ 0.4.
$J/\psi$ polarization parameter ($\lambda_{J/\psi}$) versus transverse momentum ($p_T$).
$J/\psi$ polarization parameter ($\lambda_{J/\psi}$) versus transverse momentum ($p_T$).
PHENIX has measured the e^+e^- pair continuum in sqrt(s_NN)=200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e^+e^- yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate mass region, between the masses of the phi and the J/psi meson, the yield is consistent with expectations from correlated c^bar-c production, though other mechanisms are not ruled out. In the low mass region (below the phi) the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7+/-0.4(stat)+/-1.5(syst)+/-0.9(model) At low mass (m_ee<0.3 GeV/c^2) and high p_T (1<p_T<5 GeV/c) an enhanced e^+e^- pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in p_T, with inverse slope T=221+/-19(stat)+/-19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T_init ~=300--600 MeV at times of 0.6--0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low p_T<1 GeV/c the low mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T ~=100 MeV. Theoretical models under predict the low mass, low p_T enhancement.
(Color online) Inclusive mass spectrum of $e^+e^-$ pairs in the PHENIX acceptance in $p$+$p$ collisions compared to the expectations from the decays of light hadrons and correlated decays of charm, bottom, and Drell-Yan. The contribution from hadron decays is independently normalized based on meson measurements in PHENIX. The bottom panel shows the ratio of data to the cocktail of known sources. The systematic uncertainties of the data are shown as boxes, while the uncertainty on the cocktail is shown as band around 1.
(Color online) Inclusive mass spectrum of $e^+e^-$ pairs in the PHENIX acceptance in minimum-bias Au+Au compared to expectations from the decays of light hadrons and correlated decays of charm, bottom, and Drell-Yan. The charm contribution expected if the dynamic correlation of $c$ and $\bar{c}$ is removed is shown separately. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The contribution from hadron decays is independently normalized based on meson measurements in PHENIX. The bottom panel shows the ratio of data to the cocktail of known sources. The systematic uncertainties of the data are shown as boxes, while the uncertainty on the cocktail is shown as band around 1.
(Color online) Inclusive mass spectrum of $e^+e^-$ pairs in the PHENIX acceptance in minimum-bias Au+Au compared to expectations from the decays of light hadrons and correlated decays of charm, bottom, and Drell-Yan. The charm contribution expected if the dynamic correlation of $c$ and $\bar{c}$ is removed is shown separately. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The contribution from hadron decays is independently normalized based on meson measurements in PHENIX. The bottom panel shows the ratio of data to the cocktail of known sources. The systematic uncertainties of the data are shown as boxes, while the uncertainty on the cocktail is shown as band around 1.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Invariant mass spectrum of $e^+e^-$ pairs inclusive in $p_T$ compared to expectations from the model of hadron decays for $p$+$p$ and for different Au+Au centrality classes. The charmed meson decay contribution based on PYTHIA [55] is included in the sum of sources (solid black line). The dotted line shows the contribution from charm calculated assuming an isotropic angular distribution. Statistical (bars) and systematic (boxes) uncertainties are shown separately. The systematic uncertainty on the expected hadronic sources is not shown: it ranges from ~10% in the $\pi^o$ region to ~30% in the region of the vector mesons. The uncertainty on the charm cross section, which dominates the IMR, is ~30% in both $p$+$p$ and in Au+Au collisions.
(Color online) Dielectron yield per binary collision in the mass range 1.2 to 2.8 GeV/$c^2$ as a function of $N_{part}$. Statistical and systematic uncertainties are shown separately. Also shown are two bands corresponding to different estimates of the contribution from charmed meson decays. The width of the bands reflects the uncertainty of the charm cross section only.
(Color online) Dielectron yield per binary collision in the mass range 1.2 to 2.8 GeV/$c^2$ as a function of $N_{part}$. Statistical and systematic uncertainties are shown separately. Also shown are two bands corresponding to different estimates of the contribution from charmed meson decays. The width of the bands reflects the uncertainty of the charm cross section only.
(Color online) Dielectron yield per participating nucleon pair ($N_{part}/2$) as function of $N_{part}$ for two different mass ranges (a: $0.15<m_{ee}<0.75$ GeV/$c^2$, b: $0<m_{ee}<0.1$ GeV/$c^2$) compared to the expected yield from the hadron decay model. The two lines give the systematic uncertainty of the yield from cocktail and charmed hadron decays. For the data statistical and systematic uncertainties are shown separately.
(Color online) Dielectron yield per participating nucleon pair ($N_{part}/2$) as function of $N_{part}$ for two different mass ranges (a: $0.15<m_{ee}<0.75$ GeV/$c^2$, b: $0<m_{ee}<0.1$ GeV/$c^2$) compared to the expected yield from the hadron decay model. The two lines give the systematic uncertainty of the yield from cocktail and charmed hadron decays. For the data statistical and systematic uncertainties are shown separately.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) $e^+e^-$ pair invariant mass distributions in $p$+$p$ (left) and minimum bias Au+Au collisions (right). The $p_T$ ranges are shown in the legend. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) Electron pair mass distribution for Au+Au (Min.Bias) for $1.0<p_T<1.5$ GeV/$c$. The two component fit is explained in the text. The fit range is $0.12<m_{ee}<0.3$ GeV/$c^2$. The dashed (black) curve at greater $m_{ee}$ shows $f(m_{ee})$ outside of the fit range.
(Color online) Electron pair mass distribution for Au+Au (Min.Bias) for $1.0<p_T<1.5$ GeV/$c$. The two component fit is explained in the text. The fit range is $0.12<m_{ee}<0.3$ GeV/$c^2$. The dashed (black) curve at greater $m_{ee}$ shows $f(m_{ee})$ outside of the fit range.
(Color online) Electron pair mass distribution for Au+Au (Min.Bias) for $1.0<p_T<1.5$ GeV/$c$. The two component fit is explained in the text. The fit range is $0.12<m_{ee}<0.3$ GeV/$c^2$. The dashed (black) curve at greater $m_{ee}$ shows $f(m_{ee})$ outside of the fit range.
(Color online) Electron pair mass distribution for Au+Au (Min.Bias) for $1.0<p_T<1.5$ GeV/$c$. The two component fit is explained in the text. The fit range is $0.12<m_{ee}<0.3$ GeV/$c^2$. The dashed (black) curve at greater $m_{ee}$ shows $f(m_{ee})$ outside of the fit range.
(Color online) Ratio R=(data-cocktail)/$f_{dir}(m_{ee})$ of electron pairs for different $p_T$ bins in Min.Bias Au+Au collisions. The $p_T$ range of each panel is indicated in the figure.
(Color online) The fraction of the direct photon component as a function of $p_T$. The error bars and the error band represent statistical and systematic uncertainties, respectively. The curves are from a NLO pQCD calculation (see text).
(Color online) The fraction of the direct photon component as a function of $p_T$. The error bars and the error band represent statistical and systematic uncertainties, respectively. The curves are from a NLO pQCD calculation (see text).
(Color online) Invariant cross section ($p$+$p$) and invariant yield (Au+Au) of direct photons as a function of $p_T$. The filled points are from this analysis and open points are from [81,82]. The three curves on the $p$+$p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p$+$p$ data, scaled by $T_{AA}$. The dashed (black) curves are exponential plus the $T_{AA}$ scaled $p$+$p$ fit.
(Color online) Invariant cross section ($p$+$p$) and invariant yield (Au+Au) of direct photons as a function of $p_T$. The filled points are from this analysis and open points are from [81,82]. The three curves on the $p$+$p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p$+$p$ data, scaled by $T_{AA}$. The dashed (black) curves are exponential plus the $T_{AA}$ scaled $p$+$p$ fit.
(Color online) Invariant cross section ($p$+$p$) and invariant yield (Au+Au) of direct photons as a function of $p_T$. The filled points are from this analysis and open points are from [81,82]. The three curves on the $p$+$p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p$+$p$ data, scaled by $T_{AA}$. The dashed (black) curves are exponential plus the $T_{AA}$ scaled $p$+$p$ fit.
(Color online) Invariant cross section ($p$+$p$) and invariant yield (Au+Au) of direct photons as a function of $p_T$. The filled points are from this analysis and open points are from [81,82]. The three curves on the $p$+$p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p$+$p$ data, scaled by $T_{AA}$. The dashed (black) curves are exponential plus the $T_{AA}$ scaled $p$+$p$ fit.
(Color online) The $e^+e^-$ pair invariant mass distributions in minimum bias Au+Au collisions for the low-$p_T$ range. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) The $e^+e^-$ pair invariant mass distributions in minimum bias Au+Au collisions for the low-$p_T$ range. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) The $e^+e^-$ pair invariant mass distributions in minimum bias Au+Au collisions for the low-$p_T$ range. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) The $e^+e^-$ pair invariant mass distributions in minimum bias Au+Au collisions for the low-$p_T$ range. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) The $e^+e^-$ pair invariant mass distributions in minimum bias Au+Au collisions for the low-$p_T$ range. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) The $e^+e^-$ pair invariant mass distributions in minimum bias Au+Au collisions for the low-$p_T$ range. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
(Color online) The $e^+e^-$ pair invariant mass distributions in minimum bias Au+Au collisions for the low-$p_T$ range. The solid curves represent the cocktail of hadronic sources (see Sec. IV) and include contribution from charm calculated by PYTHIA using the cross section from Ref. [48] scaled by $N_{coll}$.
Ratio of R = (data − cocktail)/$f_{dir}(m_{ee})$ for 0.8 $< p_T <$ 1.0 GeV/c in minimum bias Au$+$Au collisions. The yellow band in each panel shows $\pm1\sigma$ band of a constant fit value to the data points.
Ratio of R = (data − cocktail)/$f_{dir}(m_{ee})$ for 0.6 $< p_T <$ 0.8 GeV/c in minimum bias Au$+$Au collisions. The yellow band in each panel shows $\pm1\sigma$ band of a constant fit value to the data points.
Ratio of R = (data − cocktail)/$f_{dir}(m_{ee})$ for 0.4 $ < p_T <$ 0.6 GeV/c in minimum bias Au$+$Au collisions. The yellow band in each panel shows $\pm1\sigma$ band of a constant fit value to the data points.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). $p$$+$$p$ collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). $p$$+$$p$ collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). $p$$+$$p$ collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). $p$$+$$p$ collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). $p$$+$$p$ collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). $p$$+$$p$ collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
(Color online) $p_T$ spectra of $e^+e^-$ pairs in $p$+$p$ (left) and Au+Au (right) collisions for different mass bins, which are fully acceptance corrected. Au+Au spectra are divided by $N_{part}/2$. The solid curves show the expectations from the sum of the hadronic decay cocktail and the contribution from charmed mesons. The dashed curves show the sum of the cocktail and charmed meson contributions plus the contribution from direct photons calculated by converting the photon yield from Fig. 34 to the $e^+e^-$ pair yield using Eqs. (31) and (B14). Au$+$Au collision data shown.
The $m_{T} - m_{0}$ spectrum for the mass range 0.3 < $m_{ee}$ < 0.75 GeV/$c^{2}$ after subtracting contributions from cocktail and charm. The spectrum is fully acceptance corrected. The systematic error band includes the difference in charm yields in this mass range. The spectrum is fit to the sum of two exponential functions which are also shown separately as the dashed and dotted lines. The solid line is the sum.
Local inverse slope of the $m_{T}$ spectra of electron pairs, after subtracting the cocktail and the charm contribution, for different mass bins. The local slope is calculated in different mass ranges, 0 < $m_{T} - m_{0}$ < 0.6 GeV/$c^{2}$ and 0.6 < $m_{T} - m_{0}$ < 2.5 GeV/$c^{2}$. The solid and dashed lines show the local slope of the cocktail for the corresponding mass ranges.
Local inverse slope of the $m_{T}$ spectra of electron pairs, after subtracting the cocktail and the charm contribution, for different mass bins. The local slope is calculated in different mass ranges, 0 < $m_{T} - m_{0}$ < 0.6 GeV/$c^{2}$ and 0.6 < $m_{T} - m_{0}$ < 2.5 GeV/$c^{2}$. The solid and dashed lines show the local slope of the cocktail for the corresponding mass ranges.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au compared to predictions from Ralf Rapp. Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions in the IMR. (top left) The data are compared to the sum of cocktail+charm. The data are also compared to the sum of cocktail+charm and partonic contributions from different models. The calculations are from (center) Rapp and van Hees [15, 18, 83] and (right) Dusling and Zahed [19, 84, 85]. The partonic yields (PY) have been added to the two scenarios for charmed mesons decays, i.e. (i) $PYTHIA$ and (ii) random $c\bar{c}$ correlation.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au compared to predictions from Kevin Dusling. Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions in the IMR. (top left) The data are compared to the sum of cocktail+charm. The data are also compared to the sum of cocktail+charm and partonic contributions from different models. The calculations are from (center) Rapp and van Hees [15, 18, 83] and (right) Dusling and Zahed [19, 84, 85]. The partonic yields (PY) have been added to the two scenarios for charmed mesons decays, i.e. (i) $PYTHIA$ and (ii) random $c\bar{c}$ correlation.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au compared to predictions from Elena Bratkovskaya. Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions in the IMR. (top left) The data are compared to the sum of cocktail+charm. The data are also compared to the sum of cocktail+charm and partonic contributions from different models. The calculations are from (center) Rapp and van Hees [15, 18, 83] and (right) Dusling and Zahed [19, 84, 85]. The partonic yields (PY) have been added to the two scenarios for charmed mesons decays, i.e. (i) $PYTHIA$ and (ii) random $c\bar{c}$ correlation.
invariant mass spectrum of e+e- pairs in MB Au+Au compared to predictions from Ralf Rapp.
invariant mass spectrum of e+e- pairs in MB Au+Au compared to predictions from Ralf Rapp.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling. Invariant mass spectra of $e^{+}e^{-}$ pairs in Au + Au collisions in the LMR. The data are compared to the sum of cocktail+charm (top left). The data are also compared to the sum of cocktail+charm and hadronic+partonic contributions from different models. The calculations are from The calculations are from (top right) Rapp and van Hees [15, 18, 83], (bottom right) Dusling and Zahed [19, 84, 85], and Cassing and Bratkovskaya [20, 27, 86, 87].
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling. Invariant mass spectra of $e^{+}e^{-}$ pairs in Au + Au collisions in the LMR. The data are compared to the sum of cocktail+charm (top left). The data are also compared to the sum of cocktail+charm and hadronic+partonic contributions from different models. The calculations are from The calculations are from (top right) Rapp and van Hees [15, 18, 83], (bottom right) Dusling and Zahed [19, 84, 85], and Cassing and Bratkovskaya [20, 27, 86, 87].
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya. Invariant mass spectra of $e^{+}e^{-}$ pairs in Au + Au collisions in the LMR. The data are compared to the sum of cocktail+charm (top left). The data are also compared to the sum of cocktail+charm and hadronic+partonic contributions from different models. The calculations are from The calculations are from (top right) Rapp and van Hees [15, 18, 83], (bottom right) Dusling and Zahed [19, 84, 85], and Cassing and Bratkovskaya [20, 27, 86, 87].
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya. Invariant mass spectra of $e^{+}e^{-}$ pairs in Au + Au collisions in the LMR. The data are compared to the sum of cocktail+charm (top left). The data are also compared to the sum of cocktail+charm and hadronic+partonic contributions from different models. The calculations are from The calculations are from (top right) Rapp and van Hees [15, 18, 83], (bottom right) Dusling and Zahed [19, 84, 85], and Cassing and Bratkovskaya [20, 27, 86, 87].
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Ralf Rapp (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Rapp and van Hees [15, 18, 83], separately showing the partonic and the hadronic yields and the different scenarios for the $\rho$ spectral function, namely “Hadron Many Body Theory” (HMBT) and “Dropping Mass” (DM). The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Ralf Rapp (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Rapp and van Hees [15, 18, 83], separately showing the partonic and the hadronic yields and the different scenarios for the $\rho$ spectral function, namely “Hadron Many Body Theory” (HMBT) and “Dropping Mass” (DM). The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Ralf Rapp (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Rapp and van Hees [15, 18, 83], separately showing the partonic and the hadronic yields and the different scenarios for the $\rho$ spectral function, namely “Hadron Many Body Theory” (HMBT) and “Dropping Mass” (DM). The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Ralf Rapp (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Rapp and van Hees [15, 18, 83], separately showing the partonic and the hadronic yields and the different scenarios for the $\rho$ spectral function, namely “Hadron Many Body Theory” (HMBT) and “Dropping Mass” (DM). The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{-}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling (0.5<$p_{T}$<1.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling (0.5<$p_{T}$<1.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling 1.0<$p_{T}$<1.5 GeV/$c$. Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling 1.0<$p_{T}$<1.5 GeV/$c$. Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling (1.5<$p_{T}$<2.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Kevin Dusling (1.5<$p_{T}$<2.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows compared to the expectations from the calculations of Dusling and Zahed [19, 84, 85], separately showing the partonic and the hadronic yields. The calculations have been added to the cocktail of hadronic decays (where the contribution of the freeze-out $\rho$ meson is subtracted) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (0<$p_{T}$<0.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (0.5<$p_{T}$<1.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (0.5<$p_{T}$<1.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (0.5<$p_{T}$<1.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (1.0<$p_{T}$<1.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (1.0<$p_{T}$<1.5 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (1.5<$p_{T}$<2.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Invariant mass spectrum of $e^{+}e^{-}$ pairs in MB Au+Au for different $p_{T}$ ranges compared to predictions from Elena Bratkovskaya (1.5<$p_{T}$<2.0 GeV/$c$). Invariant mass spectra of $e^{+}e^{−}$ pairs in Min. Bias Au + Au collisions for different $p_{T}$ windows collisions compared to the expectations from the calculations of Cassing and Bratkovskaya [20, 27, 86, 87], separately showing the partonic and the hadronic yields calculated with different implementations of the $\rho$ spectral function, namely according to collisional broadening, with or without a dropping mass scenario. The calculations which include the dropping mass scenario have been added to the cocktail of hadronic decays (which is calculated by the HSD model itself) and charmed meson decays products.
Subtracted $p_{T}$ spectrum in 300-750 compared to calculations from Ralf Rapp. $p_{T}$ spectra of $e^{+}e^{−}$ pairs for 0.3 < $m_{ee}$ < 0.75 GeV/$c^{2}$ in Min. Bias Au + Au collisions compared to the expectations from the calculations of respectively R. Rapp and van Hees [15, 18, 83], Dusling and Zahed [19, 84, 85], Cassing and Bratkovskaya [20, 27, 86, 87]. The spectra are fully acceptance corrected. The curves show separately partonic and hadronic yields. For the curves of Rapp and van Hees [15, 18, 83] the two scenarios: Hadron Many Body Theory (HMBT) and Dropping Mass (DM) are shown. The sum is calculated with HMBT. The calculations are compared to the data from which the contributions of the cocktail of hadronic decays and charmed meson decays have been subtracted.
Subtracted $p_{T}$ spectrum in 300-750 compared to calculations from Kevin Dusling. $p_{T}$ spectra of $e^{+}e^{−}$ pairs for 0.3 < $m_{ee}$ < 0.75 GeV/$c^{2}$ in Min. Bias Au + Au collisions compared to the expectations from the calculations of respectively R. Rapp and van Hees [15, 18, 83], Dusling and Zahed [19, 84, 85], Cassing and Bratkovskaya [20, 27, 86, 87]. The spectra are fully acceptance corrected. The curves show separately partonic and hadronic yields. For the curves of Rapp and van Hees [15, 18, 83] the two scenarios: Hadron Many Body Theory (HMBT) and Dropping Mass (DM) are shown. The sum is calculated with HMBT. The calculations are compared to the data from which the contributions of the cocktail of hadronic decays and charmed meson decays have been subtracted.
Subtracted $p_{T}$ spectrum in 300-750 compared to calculations from Elena Bratkovskaya. $p_{T}$ spectra of $e^{+}e^{−}$ pairs for 0.3 < $m_{ee}$ < 0.75 GeV/$c^{2}$ in Min. Bias Au + Au collisions compared to the expectations from the calculations of respectively R. Rapp and van Hees [15, 18, 83], Dusling and Zahed [19, 84, 85], Cassing and Bratkovskaya [20, 27, 86, 87]. The spectra are fully acceptance corrected. The curves show separately partonic and hadronic yields. For the curves of Rapp and van Hees [15, 18, 83] the two scenarios: Hadron Many Body Theory (HMBT) and Dropping Mass (DM) are shown. The sum is calculated with HMBT. The calculations are compared to the data from which the contributions of the cocktail of hadronic decays and charmed meson decays have been subtracted.
Subtracted $p_{T}$ spectrum in 300-750 compared to calculations from Elena Bratkovskaya. $p_{T}$ spectra of $e^{+}e^{−}$ pairs for 0.3 < $m_{ee}$ < 0.75 GeV/$c^{2}$ in Min. Bias Au + Au collisions compared to the expectations from the calculations of respectively R. Rapp and van Hees [15, 18, 83], Dusling and Zahed [19, 84, 85], Cassing and Bratkovskaya [20, 27, 86, 87]. The spectra are fully acceptance corrected. The curves show separately partonic and hadronic yields. For the curves of Rapp and van Hees [15, 18, 83] the two scenarios: Hadron Many Body Theory (HMBT) and Dropping Mass (DM) are shown. The sum is calculated with HMBT. The calculations are compared to the data from which the contributions of the cocktail of hadronic decays and charmed meson decays have been subtracted.
The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5<Q^2<100 GeV^2 and at inelasticity 0.2<y<0.7 using data recorded by the H1 detector at HERA in the years 1999 and 2000, corresponding to an integrated luminosity of 43.5 pb^-1. Inclusive jet, 2-jet and 3-jet cross sections as well as the ratio of 3-jet to 2-jet cross sections are measured as a function of Q^2 and jet transverse momentum. The 2-jet cross section is also measured as a function of the proton momentum fraction xi. The measurements are well described by perturbative quantum chromodynamics at next-to-leading order corrected for hadronisation effects and are subsequently used to extract the strong coupling alpha_s.
Inclusive Jet Cross Section ${\rm\frac{d\sigma_{jet}}{dQ^2}}$.
2-Jet Cross Section ${\rm\frac{d\sigma_{2-jet}}{dQ^2}}$.
3-Jet Cross Section ${\rm\frac{d\sigma_{3-jet}}{dQ^2}}$.
Inclusive Jet Cross Section ${\rm\frac{d\sigma_{jet}}{dP_T}}$.
2-Jet Cross Section ${\rm\frac{d\sigma_{2-jet}}{d\langle P_T \rangle}}$.
3-Jet Cross Section ${\rm\frac{d\sigma_{3-jet}}{d\langle P_T \rangle}}$.
Inclusive Jet Cross Section ${\rm\frac{d^2\sigma_{jet}}{dQ^2dP_T}}$.
2-Jet Cross Section ${\rm\frac{d^2\sigma_{2-jet}}{dQ^2d\langle P_T \rangle}}$.
2-Jet Cross Section ${\rm\frac{d^2\sigma_{2-jet}}{dQ^2d\xi}}$.
3-Jet Cross Section ${\rm\frac{d^2\sigma_{3-jet}}{dQ^2d\langle P_T \rangle}}$.
3-Jet to 2-Jet Cross Sections Ratio ${\rm\frac{d\sigma_{3-jet}}{dQ^2}/\frac{d\sigma_{2-jet}}{dQ^2}}$.
3-Jet to 2-Jet Cross Sections Ratio ${\rm\frac{d\sigma_{3-jet}}{d\langle P_T \rangle}/\frac{d\sigma_{2-jet}}{d\langle P_T \rangle}}$.
3-Jet to 2-Jet Cross Sections Ratio ${\rm\frac{d^2\sigma_{3-jet}}{dQ^2d\langle P_T \rangle}/\frac{d^2\sigma_{2-jet}}{dQ^2d\langle P_T \rangle}}$.
The production of prompt photons is measured in the photoproduction regime of electron-proton scattering at HERA. The analysis is based on a data sample corresponding to a total integrated luminosity of 340 pb^-1 collected by the H1 experiment. Cross sections are measured for photons with transverse momentum and pseudorapidity in the range 6 < Et < 15 GeV and -1.0 < eta < 2.4, respectively. Cross sections for events with an additional jet are measured as a function of the transverse energy and pseudorapidity of the jet, and as a function of the fractional momenta x_gamma and x_p carried by the partons entering the hard scattering process. The correlation between the photon and the jet is also studied. The results are compared with QCD predictions based on the collinear and on the k_T factorisation approaches.
Measured inclusive prompt photon cross section in the defined phase space.
Measured prompt photon plus jet cross section in the defined phase space.
Bin averaged differential cross section as a function of ET in the defined phase space.
Bin averaged differential cross section as a function of ET in the defined phase space.
Bin averaged double differential cross section for inclusive prompt photon production in bins of ET and the pseudorapidity range -1.00 to -0.57.
Bin averaged double differential cross section for inclusive prompt photon production in bins of ET and the pseudorapidity range -0.57 to 0.20.
Bin averaged double differential cross section for inclusive prompt photon production in bins of ET and the pseudorapidity range 0.20 to 0.94.
Bin averaged double differential cross section for inclusive prompt photon production in bins of ET and the pseudorapidity range 0.94 to 1.42.
Bin averaged double differential cross section for inclusive prompt photon production in bins of ET and the pseudorapidity range 1.42 to 2.43.
Bin averaged differential cross section for prompt photon plus jet as a function of the photon transverse energy.
Bin averaged differential cross section for prompt photon plus jet as a function of the photon pseudorapidity.
Bin averaged differential cross section for prompt photon plus jet as a function of the jet transverse energy.
Bin averaged differential cross section for prompt photon plus jet as a function of the jet pseudorapidity.
Bin averaged differential cross section for prompt photon plus jet as a function of X(C=GAMMA,LO) thelongitudinal momentum fraction of the partons in the photon in LO approximation.
Bin averaged differential cross section for prompt photon plus jet as a function of X(C=P,LO) thelongitudinal momentum fraction of the partons in the proton in LO approximation.
Bin averaged differential cross section for prompt photon plus jet as a function of the photons transverse momentum perpendicular to the jet direction separated into two regions of X(C=GAMMA,LO).
Bin averaged differential cross section for prompt photon plus jet as a function of the difference in azimuthal angle between the photon and the jet separated into two regions of X(C=GAMMA,LO).
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary lead target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles 20 to 125 degrees. Cross-sections on lead nuclei are compared with cross-sections on beryllium, copper, and tantalum nuclei.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 3 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 5 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 8 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 12 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI+ PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for P production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI+ production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 20 to 30 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 30 to 40 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 40 to 50 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 50 to 60 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 60 to 75 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 75 to 90 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 90 to 105 degrees.
Double-differential inclusive cross section for PI- production in PI- PB interactions at beam momentum 15 GeV/c in the polar angle range 105 to 125 degrees.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary carbon target, of proton and pion beams with momentum from \pm 3 GeV/c to \pm 15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on carbon nuclei are compared with cross-sections on beryllium, copper, tantalum and lead nuclei.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 20 to 30 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 30 to 45 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 45 to 60 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 65 to 90 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 90 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb^-1. The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q^2 > 2 Gev^2, and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F_2 was extracted and is compared to theoretical predictions.
Total visible cross section for BBAR production and decay into MUON+JET.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of the muon transverse momentum.
Measured differential cross section as a function of the muon pseudorapidity.
Measured differential cross section as a function of the jet transverse momentum.
Measured differential cross section as a function of the jet pseudorapidity.
Measured cross sections for beauty production with a muon and jet for the Q**2 bin 2 to 4 GeV**2.
Measured cross sections for beauty production with a muon and jet for the Q**2 bin 4 to 20 GeV**2.
Measured cross sections for beauty production with a muon and jet for the Q**2 bin 20 to 45 GeV**2.
Measured cross sections for beauty production with a muon and jet for the Q**2 bin 45 to 100 GeV**2.
Measured cross sections for beauty production with a muon and jet for the Q**2 bin 100 to 250 GeV**2.
Measured cross sections for beauty production with a muon and jet for the Q**2 bin 250 to 3000 GeV**2.
Extracted values of F2 for B-BBAR production at an X value of 0.00013. The second systematic error is the uncertainty on the extrapolation to the full muon and jet phase space.
Extracted values of F2 for B-BBAR production at an X value of 0.0002. The second systematic error is the uncertainty on the extrapolation to the full muon and jet phase space.
Extracted values of F2 for B-BBAR production at an X value of 0.0005. The second systematic error is the uncertainty on the extrapolation to the full muon and jet phase space.
Extracted values of F2 for B-BBAR production at an X value of 0.002. The second systematic error is the uncertainty on the extrapolation to the full muon and jet phase space.
Extracted values of F2 for B-BBAR production at an X value 0.005.
Extracted values of F2 for B-BBAR production at an X value of 0.013. The second systematic error is the uncertainty on the extrapolation to the full muon and jet phase space.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.