Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.
The measured and Born asymmetries for the proton target at the average values of the average values of X, Y,and Q**2 in 45 bins. DSYS includes the 5.2 PCT normalization uncertainty.
The measured and Born asymmetries for the deuterium target at the average values of the average values of X, Y,and Q**2 in 45 bins. DSYS includes the 5 PCT normalization uncertainty.
Differential cross section data of the CELLO experiment on pair production of muons, taus, and heavy quarks ine+e−-annihilation are presented and analysed, together with our data on Bhabha scattering, in terms of compositeness effects characterized by the mass scale Λ. We discuss difficulties in the combination of limits Λ from different experiments. The appropriate parameter to combine different results turns out to be ɛ=±1/Λ2, which is in contrast to Λ Gaussian distributed.
Charge asymmetry for charm quarks derived from the differential cross section data.
Charge asymmetry for bottom quarks derived from the differential cross section data.
A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.
No description provided.
None
No description provided.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Forward-backward asymmetry.
The reaction e + e − → τ + τ − has been studied at centre of mass energies between 14.0 and 46.8 GeV with the CELLO detector at the PETRA e + e − collider. We present results for the cross section σ τ and the charge asymmetry A τ . The results are in good agreement with the standard model. We have also measured the topological decay rates BR 1 , BR 3 and BR 5 for the inclusive decay of the τ lepton into one, three and five charge particles. The results confirm and improve earlier CELLO measurements at other energies. We find for the combined values at all energies BR 1 = (84.9 ± 0.4 ± 0.3)%, BR 3 = (15.0 ± 0.4 ± 0.3)% and BR 5 = (0.16 ± 0.13 ± 0.04)%.
Corrected for radiative effects and background contributions.
The reactions e + e − → μ + μ − and τ + τ − were measured at s =52 GeV and 55 GeV by using the TOPAZ detector at TRISTAN. For the combined data, the observed charge asymmetry is −0.29±0.13 and the total cross section is 27.9±3.0 (stat.)±0.8 (syst.) pb for μ + μ − production, and those for τ + τ − production are −0.20±0.14 and 35.7±4.3 (stat.)±2.4 (syst.)pb, respectively. These values are consistent with predictions by the standard model of electroweak interactions.
.
.
The production and decay of τ-pairs was studied with the JADE detector at PETRA at center-of-mass energies of 30 ⩽√ s ⩽ 46.78 GeV. The total production cross section for τ-pairs agreed with QED predictions to order α 3 . Lower limits on QED cut-off parameters of Λ + > 285 GeV and Λ − > 210 GeV at 95% confidence level were ontained. The decay branching fractions into one and three charged particles were determined to be (86.1 ± 0.5 ± 0.9)% and (13.6±0.5 ±0.80)%. In the angular distributions a forward-backward asymmetry was observed, from which the axial-vector weak charge to the τ was determined to be a τ = −0.74 ± 0.22 in agreement with the standard model. An analysis of the process e + e − → τ + τ − γ showed agreement with QED calculations to O(α 3 ).
Forward-backward asymmetry determined from fit to angular distribution of form N*(1 + cos(theta)**2 + (3/8)*A*cos(theta)).
Study of radiative tau events.
The process e + e − → μ + μ − and e + e − have been studied in the energy range s =52−61.4 GeV , using the TOPAZ detector at TRISTAN. From an integrated luminosity of L = 74.0 pb −1 , lowest-order cross sections and forward-backward asymmetries are measured to be 〈σ μμ 〈 = 25.4±0.9±1.2 pb , 〈A μμ 〉 = (−32.2±3.1±1.1)%, 〈σ ττ 〉 = 27.1±1.1±1.2 pb , 〈A ττ 〉 = (−33.9±4.9±1.0)% , at an average energy of s 〉=57.87 GeV . From the measured assymetry we derive axial vector couplings of a c a μ =0.96±0.09±0.01,and a c a τ =1.01±0.14±0.01±. These results are consistent with standard model expectations. Lower limits in the range 2–5 TeV (95%CL)are placed on compositeness scale parameters for leptons.
No description provided.
None
ASYM is defined as follows: ASYM = (SIG(YRAP(P=3,RF=LAB)<1.1) - (SIG(YRAP(P=3,RF=LAB)>1.1)) / (SIG(YRAP(P=3,RF=LAB)<1.1)+ SIG(YRAP(P=3,RF=LAB)>1.1)).
ASYM is defined as follows: ASYM = (SIG(YRAP(P=3,RF=LAB)<1.1) - (SIG(YRAP( P=3,RF=LAB)>1.1)) / (SIG(YRAP(P=3,RF=LAB)<1.1)+SIG(YRAP(P=3,RF=LAB)>1.1)).
ASYM is defined as follows: ASYM = (SIG(YRAP(P=3,RF=LAB)<1.1) - (SIG(YRAP( P=3,RF=LAB)>1.1)) / (SIG(YRAP(P=3,RF=LAB)<1.1)+SIG(YRAP(P=3,RF=LAB)>1.1)).