We present a study of the incclusive reaction p p → Λ/Σ 0 + anything at 5.7 GeV/ c based on 9544 events. The main experimental feature is a flattening of the momentum-transfer distribution with the increasing missing mass. We attempt to interpret the results in the framework of the triple-Regge limit. The effective trajectory is shown to be in good agreement, within theoretical uncertainties, with what is expected from K or K ∗ – K ∗∗ exchanges.
No description provided.
A study of pp interactions at an incident momentum of 16.2 GeV/ c leading to two-prong non-strange final states was carried out in an exposure of the 2m CERN hydrogen bubble chamber. The c.m. angle and momentum distributions for the outgoing particles in the final states pn π + and pp π 0 are presented and discussed. These final states were analysed in terms of quasi two-body final states - N(Nπ), with the pion-nucleon system in an I = 1 2 or I = 3 2 state. A determination of these two isospin amplitudes and their interference term is then carried out. The reaction pp → pn π + is found to be well described by a Reggeized exchange model, as well as by a double Regge-exchange model.
No description provided.
Based on 150 000 photographs taken at the ZGS with the 30 inch deuterium-filled chamber we present an analysis of the elastic p d scattering reaction. Due to unrecoreded small deuteron recoils we were only able to measure the elastic cross section in the four-momentum region | t | > 0.03 (GeV/ c ) 2 . Extrapolation towards small | t | by two different methods gave us two compatible estimates of the total elastic cross section. The differential cross section was analyzed by means of the Glauber formalism both with and without the effects due to the D-wave part of the deuteron wave function. The differential cross sections of np at 5.4 GeV/ c and pn deduced from our data were compared and exhibit a crossover phenomenon.
CALCULATED USING TOTAL ELASTIC SIG(-T > 0.03 GEV**2) = 7.2 +- 0.4. THE SMALL ANGLE SCATTERING APPROXIMATION HOLDS: D(SIG)/DOMEGA(RF=LAB) = (P**2/PI)*D(SIG)/DT.
INTEGRATED CROSS SECTION USING EITHER EXPONENTIAL EXTRAPOLATION OR GLAUBER MODEL FIT FOR -T < 0.03 GEV**2.
The observation of 70 000 K 0 p π + events produced with K + incident momenta of 1.21, 1.29, 1.38 and 1.69 GeV/ c allows a detailed description of the production and decay of the Δ(1236) and K ∗ (892) resonances which dominate the K 0 p π + final state. No striking variations with energy are observed. The associated production of Δ and K ∗ near threshold shows striking similarities with the same production at higher energy.
INCLUDING 1 PCT SYSTEMATIC ERROR ON CORRECTIONS.
FIT 'A', ALLOWING FOR DELTA-K* INTERFERENCE (TWO OTHER FITS GIVEN IN PAPER).
S-CHANNEL HELICITY FRAME.
The p p and p n elastic differential cross sections have been extracted from the reaction p d→ p pn in which the deuteron breaks up. The incident antiproton momenta were 0.480, 0.735 and 0.940 GeV/ c , and the range of the momentum transfers was 0.04 < ∣ t ∣ < 0.7 (GeV/ c ) 2 . Both p p and p n differential cross sections are diffraction-like, with structure similar to the higher-momentum data.
No description provided.
No description provided.
No description provided.
We present tables of the absolute differential cross sections of elastic pd scattering. The cross-section data have been obtained at the Serpukhov accelerator from 10 to 70 GeV in the | t |-range 0.002–0.2 GeV 2 / c 2 .
No description provided.
No description provided.
No description provided.
We present differential cross sections for elastic p d scattering at beam momenta 0.735 and 0.940 GeV/ c and momentum transfers in the range 0.04<| t |<0.5(GeV/ c ) 2 . The p d elastic differential cross section is expressed in terms of a deutron form factor and the I =0 t -channel exchange N N amplitudes, enabling us to isolate the corresponding I =0 t -channel exchange cross sections.
DIFFERENTIAL CROSS SECTION SLOPE, ALLOWING FOR DEUTERON FORM-FACTOR.
No description provided.
Data are presented on the production of the KN π final states in K + p interactions at 7.3 GeV/ c . The energy dependence of the KN π final state cross sections, the effective-mass distributions, and the spectra of c.m. longitudinal momenta are given, and features of these data are compared with predictions of the generalized Veneziano (GV) model. Furthermore, we present the momentum transfer and decay angular distributions for K ∗ (890), K ∗ (1420) and Δ (1236) production within the KN π final states and discuss these quasi-two-body reactions in terms of the GV model.
BREIT-WIGNER RESONANCE FITS WITH BACKGROUND CONTRIBUTION.
No description provided.
No description provided.
We have made a study of the coherent reaction K + d → K 0 π + d at 2 GeV/ c , using data obtained in the Lawrence Berkeley Laboratory 25 inch bubble chamber. The cross section for this reaction is 324 ± 25 μ b, after correction for invisible K 0 decays. This reaction is dominated primarily by vector exchange. We determine the parameters of the ω trajectory to be α ω = (0.33 ± 0.04) + t .
No description provided.
SLOPE IS 9.4 +- 0.5 GEV**-2 FOR -T > 0.02 GEV**2 AND 10.4 +- 0.6 GEV**-2 FOR -TP > 0.
No description provided.
We have studied high-energy proton scattering on Be, C, Cu and Pb targets using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/ c , the square of the four-momentum transfer varied from t = 0.1 to t = 4.4 GeV 2 . We have recorded momentum distributions of scattered protons in the high-momentum range. An application of multiple-scattering theory yielded agreement of calculation and experimental results to within a ± 30% uncertainty of the former.
X ERROR D(OMEGA) = 0.0076 MSR.
X ERROR D(OMEGA) = 0.0076 MSR.
X ERROR D(OMEGA) = 0.0076 MSR.