A spin-parity analysis of the ϱ + ϱ − system in the reaction γγ→ϱ + ϱ − →Π + Π − Π 0 Π 0 has been performed using the ARGUS detector at the e + e − storage ring DORIS II at DESY. The cross section is found to be dominated by the amplitudes J P = 0 + and J P = 2 + ( J z = 2).
No description provided.
Cross section for different JP states.
The reactionγγ→3π+3π- has been studied usig the JADE detector at PETRA. The topological cross sectionσ(γγ→3π+3π-) was measured in the CM energy range 1.5–5.5 GeV. The production ofρ0,s was observed and the average number ofρ0,s per event measured. The contributions of the subprocessesγγ→ρ02π+2π-,γγ→ρ0ρ0π+2π- andγγ→ 3π+3π- (phase space) were studied and 95% C.L. upper limits for the cross sectionσ(γγ→ρ0ρ0π+π- determined. Finally the Bose-Einstein correlation for pairs of like signed pions was observed. A fit to a standard parametrization gave results consistent with other studies of this effect in pion systems.
Topological cross section.
Fractions of events for different final states resulting from the extended liklihood fit using incoherent weights.
Fractions of events for different final states resulting from the extended liklihood fit using coherent weights.
We present a new high-statistics measurement of the cross section for the process e+e−→e+e−π+π− at a center-of-mass energy of 29 GeV for invariant pion-pair masses M(π+π−) between 350 MeV/c2 and 1.6 GeV/c2. We observe the f2(1270) and measure its radiative width to be 3.15±0.04±0.39 keV. We also observe an enhancement in the π+π− spectrum near 1 GeV. General agreement is found with unitarized models of the γγ→π+π− reaction that include final-state interactions.
No description provided.
Statistical errors only.
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
Photon structure function F2 for total data.
We have studied the ρ0 production rate in the reaction ξξ→3π+3π− in the energy range 1.6≦Wγγ≦7.5 GeV with the CELLO detector at PETRA. Our analysis points to a substantial yield of ρ0ρ0π+π− events in particular atWγγ>4.0 GeV. We give cross sections for the ρ02π+2π− and ρ0ρ0π+π− final states and calculate upper limits for the reaction γγ→ρ0ρ0 (1700) →ρ0ρ0π+π−.
Data from CA model analysis.
Data from NCA model analysis.
Upper limits to RHO0 RHO(1700)0 cross section with 95 pct confidence limits. Data read from graph.
The reaction γγ→π+π-π+π-π0 has been studied using the JADE detector at PETRA. The cross sections for γγ→ωπ+- and for γγ→ωρ0- are given. We observe no peak in these cross sections in the regionWγγ=1.9–2.0 GeV.
No description provided.
The Crystal Ball detector has been used at the DORIS II storage ring at DESY to study the reactionγγ→π0π0π0 in theπ0π0π0 invariant mass range from 850 MeV/c2 to 2600 MeV/c2. An enhancement around 1750 MeV/c2 is attributed to theπ2(1670) resonance. The observedπ0π0 invariant mass distribution and theπ0 angular distributions are consistent with those expected for the decay chainπ2→π0f2(1270)→π0π0π0. From our measurements we find the following resonance parameters: two photon partial width\(\Gamma _{\pi _2 }^{\gamma \gamma }= (1.41 \pm 0.23 \pm 0.28)keV\), massM(π2)=(1742±31±49)MeV/c2. and total width\(\Gamma _{\pi _2 }^{tot}= (236 \pm 49 \pm 36)MeV\).
Data read from graph.
Cross section times branching ratio to 3pi0 assuming the decay chain pi2 --> pi0f2 --> 3pi0.
We have studied the properties of pion production in the reaction γ →3 π + 3 π − in the energy range 1.6⩽ W γγ ⩽7.5 GeV with the CELLO detector at PETRA. We present the topological cross section both for Q 2 ≈0 (anti-tag) and Q 2 ≈0 (single-tag). The Q 2 dependence of the cross section is flatter than the GVDM prediction. The distribution of the production angle of the pions in the CMS peaks at small angles, indicating a peripheral process. In accordance with the VDM picture the p T distribution of the pions manifests an exponential fall-off. Like sign pion pairs were found to be Bose-Einstein correlated. We use this correlation to estimate the spatial dimensions of the interaction region.
No description provided.
No description provided.
No description provided.
The reactionγγ→π+π−π+π− has been studied with the ARGUS detector. The rate in the invariant mass region below 1.8 GeV/c2 is found to be largely due toρ0ρ0 production. A spin-parity analysis shows a dominance of the partial wave (JP,Jz)=(2+, 2) with a small admixture fromJP=0+. The contribution of negative parity states is consistent with zero. The large ratio of cross sectionsσ(γγ→ρ0ρ0)/σ(γγ→ρ+ρ−)≃4, and the dominance of theJP=2+ wave in the reactionγγ→ρ0ρ0 is a signature consistent with the production of an exotic (I=2) resonance.
No description provided.
Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.
Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.
Resonance production in the γγ reactionse+e−→e+e+e−π0π0 ande+e−π0η has been studied with the JADE detector at PETRA. The decay widths into γγ of thef2(1270),a0(980) anda2(1320) were measured to be\(\Gamma _{\gamma \gamma } (f_2 (1270)) = 3.19 \pm 0.09_{ - 0.38}^{ + 0.22} \) Kev,Γλλ(a0(980))=0.28±0.04±0.10 KeV/BR(a0(980)→π0η) andΓλλ(a2(1320))=1.01±0.14±0.22KeV. For thef0(975) andf4(2050) upper limits of the widths were obtained,Γλλ(f0(975))<0.6 KeV, andΓλλ(f4(2050))<1.1 KeV, both at the 95% C.L. Assuming that the spin 0 background under thef2(1270) is small, thef2(1270) was found to be produced exclusively in a helicity 2 state. The helicity 0 contribution is <15% at the 95% C.L. The cross section forλλ→π0π0 in the mass range 2.0–3.5 GeV/c2 was measured for the first time. Since the cross section forλλ→π+π− is a factor ∼2 larger, ππ production in this range can be interpreted as taking place via isospin 0 production.
Cross section for ABS(COS(THETA*)) < 0.3.
Cross section under assumptions of spin 2, helicity 2 production.
Cross section under assumption of spin 0 production.