We report on a measurement of elastic differential cross sections for p±p, π±p, and K±p at 100 and 200 GeV/c in the range 0.03<|t|<0.10 (GeV/c)2. Our data display a simple exponential dependence which is consistent with other measurements in this t region or with extrapolations from higher t.
No description provided.
No description provided.
No description provided.
No description provided.
We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.
No description provided.
Simple inclusive cross sections for p p interactions at 12 GeV/ c are given. The data cover prong cross sections, V 0 production and resonances. Separation has been made into annihilation and non-annihilation modes. Some implications of the data are discussed. It is pointed out that the ratios of cross sections for ϱ 0 π − production are independent of incident antiproton momentum in p p annihilation processes, and that data at the highest available pp energies (ISR) tend to the same value.
NORMALIZED TO A TOTAL CROSS SECTION OF 51.7 +- 0.8 MB.
We give cross sections for annihilation and non-annihilation reactions in p p interactions at 8.8 GeV. The non-annihilation data are compared with pp data from the same experiment. We compare data on resonance production and on the impact parameter structure of the final states in p p annihilation and non-annihilation and pp interactions. We investigate the charge structure of the 2 π + 2 π − π 0 final state, and find it consistent with a simple quark model.
NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. ANNIHILATION CROSS SECTIONS.
NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. NON-ANNIHILATION CROSS SECTIONS.
NORMALIZED TO A TOTAL P P CROSS SECTION OF 40.0 MB.
An experimental analysis of p p interactions between the p p threshold (√ s = 1878 MeV) and √ s = 2 100 MeV leads to clear evidence for an s -channel effect in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (Γ ⋍ 80 MeV /c 2 ) . A comparison is made with the backward elastic scattering and charge-exchange behaviour. An interpretation in terms of an object strongly coupled to mesonic decay modes, with small or middle-sized elasticity ( x ⩽ 0.135 −0.06 +0.13 ) is given. No significant narrow structure is observed in the backward elastic scattering between 1.9 and 2 GeV. The experimental resolution of √ s in this case is 2 MeV.
LOWER MOMENTUM RESULTS WERE REPORTED IN CH. D'ANDLAU ET AL., PL 58B, 223 (1975). TABULATED NUMERICAL VALUES OF DATA ON FIGURES SUPPLIED BY M. LALOUM.
The cross section for 180° elastic scattering of antiprotons by protons between 406 and 922 MeV/c has been measured. A single-arm spectrometer detected recoil protons corresponding to events with 〈cosθc.m.〉=−0.994. The regions of the reported resonances at 1936 and 2020 MeV were scanned in 10-MeV/c steps with a typical statistical error of ≈ 7% and an rms mass resolution of ±3 MeV. No narrow enhancements (Γ<10 MeV) were observed.
735 MEV/C VALUE MISPRINTED IN JOURNAL - CORRECTION SUPPLIED BY M. A. GARNJOST (PRIV COMM 28 MAR 1980).
None
THESE DATA ARE TABULATED IN THE RECORD OF THE PUBLISHED VERSION.
DIVIDE BY 20 TO GET MB/GEV**2.
FROM QUADRATIC EXPONENTIAL FITS TO D(SIG)/DT FOR -T = 0 TO 1.4 GEV**2. SYSTEMATIC ERRORS INCLUDED.
The elastic and topological p¯p cross sections have been measured at 48.9 GeV/c in the Fermilab proportional-wire-chamber-30-in.-bubble-chamber hybrid spectrometer. The elastic cross section is 7.81±0.24 mb and the slope of the elastic differential cross section at t=0 is 13.4±0.8 GeV−2. Further, the moments of the inelastic topological-cross-section distribution are 〈nc〉=5.69±0.03, 〈nc〉D=2.10±0.02, and f2cc=1.67±0.12.
Axis error includes +- 0.0/0.0 contribution (?////DALITZ PAIRS. VEES AND GAMMA CONVERSIONS NEAR THE VERTEX WERE DETERMINED TO BE NEGLIGIBLE. LOW -T ELASTIC EVENTS//ODD-PRONG EVENTS APPARANTLY NOT CAUSED BY SECONDARY INTERACTIONS WERE MOVED TO THE NEXT HIGHER MULTIPLICITY ON THE ASSUMPTION THAT A SHORT TRACK WAS NOTVISIBLETOTAL AP-P CROSS SECTION OF 43.86+-0.25 MB FROM A.S.CARROL ET AL.PRL 33, 928(1974) WAS USED FOR NORMALIZATION).
Axis error includes +- 0.0/0.0 contribution (?////DALITZ PAIRS. VEES AND GAMMA CONVERSIONS NEAR THE VERTEX WERE DETERMINED TO BE NEGLIGIBLE. LOW -T ELASTIC EVENTS//ODD-PRONG EVENTS APPARANTLY NOT CAUSED BY SECONDARY INTERACTIONS WERE MOVED TO THE NEXT HIGHER MULTIPLICITY ON THE ASSUMPTION THAT A SHORT TRACK WAS NOTVISIBLETOTAL AP-P CROSS SECTION OF 43.86+-0.25 MB FROM A.S.CARROL ET AL.PRL 33, 928(1974) WAS USED FOR NORMALIZATION).
No description provided.
We present new data on charged particle production in p p interactions at 100 GeV/ c . Comparisons are made between p p annihilations (estimated by differences) between corresponding p p and pp data samples) and e + e − annihilation into hadrons. A technique for separating the inclusive proton and pion spectra is described and the resulting pion spectra are studied in terms of Feynman x , rapidity and p T . Comparison with pp data allows us to estimate the pion spectra in p p annihilations and we find agreement with predictions of Mueller-Regge theory. We also present results on semi-inclusive π ± and proton production, give updated topological cross sections and describe further attempts to isolate effects due to annihilations. Finally we investigate the diffractive excitation of the antiproton into low-mass states by studying events with a slow recoil proton.
No description provided.
No description provided.
No description provided.