None
HADRONIC WIDTH IS 26 +- 11 KEV, ELECTRON DECAY WIDTH IS 3.4 +- 1.2 KEV AND MUON DECAY WIDTH IS 2.4 +- 1.1 KEV.
We give the cross-sections of quasi-two-body reactions produced in K−-proton interactions at 13 different energies in the centreof-mass energy range 1.915 to 2.168 GeV.
No description provided.
The reaction K−n→Σ−η has been studied near threshold. The production angular distribution and the cross-section as a function of energy were measured. The combined angular distributions of this experiment and two previous ones suggest that aJ=1/2 amplitude dominates in Σ−η production. Our cross-section can be fitted with a Σ−1η resonance of mass 1785±12 and width 89±33, or it can be fitted in a zero-effective-range scattering approximation with a scattering length of (0.92±0.12)±i(0.04±0.28) fm.
No description provided.
CROSS SECTION NEAR THRESHOLD CORRESPONDS TO A SCATTERING LENGTH OF (0.92 +- 0.12) +- I*(0.04 +- 0.28) FM.
PRODUCTION ANGULAR DISTRIBUTION - ASSUMED SYMMETRIC IN COS(THETA).
In this note we report the results obtained in a single-photoproduction experiment on neutrons in deuterium, with an experimental apparatus made of scintillation counters, spark chambers and a magnetic spectrometer; the explored energy region is one around the second resonance, that is (500÷900) MeV indicent γ-ray energy. We briefly describe the present situation of the phenomenological analysis of the single photoproduction in the second resonance region and compare the results of an analysis made by us with the results obtained by other authors; in particular the e.m. coupling of theP11 isobaric state found by us is large, in accordance with the results of some other authors.
No description provided.
The reactions\(\bar pp \to \bar \Lambda \Lambda \),\(\bar \Lambda \Sigma ^0+ C.C.\),\(\bar \Sigma ^ +\Sigma ^ +\) and\(\bar \Sigma ^ -\Sigma ^ -\) are studied at 2.2 GeV/c. The cross-section, differential cross-section, polarization and spin correlations (between the\(\bar \Lambda \) and Λ hyperons) are discussed.
No description provided.
No description provided.
LAMBDA AND ALAMBDA POLARIZATIONS ASSUMED EQUAL. SPIN CORRELATIONS ALSO ESTIMATED.
Data on\(\bar pn\) annihilation at rest into π−ϕ are presented. The production frequency, mass, width and decay angular distribution of the ϕ-meson are measured.
RELATIVE PRODUCTION FREQUENCY OF PHI.
The differential cross section for the reaction π − p→n π ° has been measured with high statistics at six incident beam momenta between 1.0 and 2.4 GeV/ c . The results are compared with predictions of recent phase shift analyses and forward dispersion relations.
No description provided.
FROM EXTRAPOLATING THE LEGENDRE POLYNOMIAL FITS.
THE LEGENDRE POLYNOMIAL FITS WERE CONSTRAINED IN THE EXTREME BACKWARD DIRECTION BY DATA AT THETA = 180 DEG FROM OTHER EXPERIMENTS.
Electron-proton elastic scattering cross sections were measured at low four-momentum transfers squared ( q 2 from 0.13 to 2.15 fm −2 ) at six different energies between 150 and 275 MeV. The electric ( G E ) and magnetic ( G M ) form factors of the proton have been determined by Rosenbluth plots and independently by using analytical functions for the form factors to fit the cross sections. The electric form factor is found to deviate significantly from the dipole fit. From the slope of the form factor functions at q 2 = 0 the rms radii of the charge and the magnetic moment distribution were determined. The charge rms radius is found to be more than 10% larger than the value given by the dipole fit.
No description provided.
No description provided.
No description provided.
None
No description provided.
The angular distribution of π + p elastic scattering has been measured at an incident momentum of 10 GeV/ c . Nearly the whole angular range was covered in one experimental set-up. The pronounced dip at − t = 2.8 (GeV/ c ) 2 , observed at lower momenta, has diminished and is essentially a shoulder at 10 GeV/ c . The other structure at larger momentum transfers are also different in detail from what we observed at 5 GeV/ c . In the 90° c.m. region the differential cross-section is approximately one nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c .
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).