Differential cross sections as a function of transverse momentum are presented for the production at ∼90° (in the c.m. system) of π±, K±, p, and p¯ in p-nucleus collisions at incident proton energies of 200 and 300 GeV.
No description provided.
No description provided.
No description provided.
Differential cross sections for π±p, K±p, pp, and p¯p elastic scattering were measured at 3, 3.65, 5, and 6 GeVc for momentum transfers from 0.03 to 1.5 GeV2 using the Argonne effective mass spectrometer. Particular attention was paid to the relative particle-antiparticle normalization. The crossover points are consistent with no energy dependence, average values being 0.14 ± 0.03, 1.190 ± 0.005, and 0.160 ± 0.007 GeV2 for π's, K's, and protons, respectively.
No description provided.
We have found 431 events of the reaction K+d→K0pps at 3.8−GeVc K+ beam momentum in a 295 000-frame exposure of the Argonne National Laboratory 30-in. deuterium-filled bubble chamber. The event sample consists of one- and two-prong events with a visible K0 decaying to π+π− The total and differential cross sections are found after correction for unseen K0's and for efficiencies in the scanning-measuring-fitting chain. Comparisons of the data are made to an SU(3) sum rule, a Regge model, and data for K−p→K¯0n.
No description provided.
GLAUBER SCREENING AND PAULI EXCLUSION PRINCIPLE CORRECTIONS ARE REQUIRED TO YIELD THE K+ N CHARGE EXCHANGE CROSS SECTION. THE GLAUBER CORRECTION IMPLIES AN INCREASE IN THE CROSS SECTIONS BY THE FACTOR 1.016. THE PAULI CORRECTION IS SLIGHT EXCEPT AT LOW -T (<0.2 GEV**2) WHERE IT IS LARGE AND UNCERTAIN.
None
FORWARD AMPLITUDE DEDUCED FROM D(SIG)/DOMEGA IN COULOMB-NUCLEAR INTERFERENCE REGION.
None
FOR -T = 0.002 TO 0.05 GEV**2.
None
No description provided.
None
No description provided.
FROM INTEGRATING D(SIG)/DOMEGA.
REAL/IMAG FOR FORWARD AMPLITUDE FROM FIT TO D(SIG)/DOMEGA IN COULOMB-NUCLEAR INTERFERENCE REGION. GLAUBER MODEL USED TO DEDUCE VALUE FOR NEUTRON TARGET.
None
No description provided.
None
No description provided.
None
No description provided.