The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.
No description provided.
Measurements of the differential cross section for the inelastic scattering of 12-GeV/c muons on protons are reported. These measurements cover a kinematic range of |q2| (the square of the four-momentum transferred from the lepton) up to 4.0 (GeV/c)2 and of muon energy losses (ν) up to 9.0 GeV. Only the scattered muon is observed in an optical spark-chamber apparatus. The data are compared with electron-proton inelastic scattering, and analyzed in terms of possible lepton form factors and anomalous interactions. μ−p inelastic scattering is found to exhibit the same mild |q2| behavior as does e−p inelastic scattering. No experimentally significant deviation from the predictions of muon-electron universality has been found. If the ratio of muon to electron inelastic cross sections is parametrized by the form (1.0+|q2|ΛD2)−2, we find with 97.7% confidence that ΛD>4.1 GeV/c. The muon-proton cross sections on the average are slightly smaller than the electron-proton cross sections. This observation is not experimentally significant because such a difference might be caused by systematic errors, but this observation is used to speculate as to the most fruitful direction for future experiments.
No description provided.
No description provided.
No description provided.
We present results of an analysis of two-prong events for elastic scattering and single-pion production in K−p interactions at 5.5 GeVc. The resonance parameters for the charged and neutral K*(890) and K*(1420) are determined and the observed production and decay properties of the charged and neutral K*(890) are compared with the theoretical predictions of an absorptive one-particle-exchange model and a Regge model. The K*(1420) differential cross section and density-matrix elements are presented and the question of whether more than one resonance exists in this mass range is considered. A search for resonance effects at Kπ mass beyond 1500 MeV is made. In particular, the recently reported state at 1800 MeV is discussed. A B5-model analysis of the reaction K−p→K¯0π−p is also presented.
NORMALIZED TO SIG(K- P --> ANYTHING) OF 24.3 +- 0.8 MB.
FORWARD CROSS SECTION OPTICAL POINT FROM TWO PARAMETER EXPONENTIAL FIT OVER 0.12 < -T < 0.68 GEV**2.
No description provided.
p−d elastic cross-section and polarization measurements are presented at an incident energy of 198 MeV, over the center-of-mass angular range 80° to 170°. The peak in the backward or pickup region is examined in terms of a simple nucleon-exchange parametrization.
No description provided.
We report on a measurement of the missing-mass, (mm)−, spectrum from the reaction π−+p→(mm)−+p at 8 GeV. The data contain 6500 events in the R peak (M2=2.72±0.02 GeV2, Γ=139±31 MeV). The R shape is consistent with either a single Breit-Wigner or several wide resonances, as suggested by bubble-chamber experiments, but inconsistent with the series of narrow resonances reported by the CERN missing-mass group.
No description provided.
An experiment was done in the external proton beam of the Berkeley 184-in. cyclotron to measure the production cross sections for pions from various target nuclei, from hydrogen to lead. The cross-section data are presented and the reaction mechanisms discussed. The hydrogen production appears to fit the one-pion-exchange model.
No description provided.
We present the results of an analysis of data for the reaction π−p→KS0K−p at 20.3-GeV/c incident π momentum. We find that the K0K− effective-mass spectrum shows a single peak in the A2 region which is well fitted by a Breit-Wigner shape. The data in the A2-peak region are inconsistent with the split-A2 shape reported earlier. The distribution in t of the A2 events shows a forward dip followed by an exponential falloff. The A2 decay angular distribution is well fitted by a single resonance with quantum numbers JP=2+. The results of an analysis of the density-matrix elements for this reaction are given.
CORRECTED FOR UNSEEN K0 DECAYS AND FOR BREIT-WIGNER RESONANCE TAILS.
INCLUDING THE DENSITY MATRIX ELEMENTS OMITTED FROM THIS FIT GIVES NO SIGNIFICANT IMPROVEMENT AND THE NEW PARAMETERS ARE CLOSE TO ZERO. LIM INDICATES FITTED VALUE LIMITED FROM VARIATION BY PHYSICAL CONSTRAINTS FROM OTHER PARAMETERS.
From the energy dependence of the p¯p and p¯n inelastic cross sections we deduce an upper limit to the resonant contribution in p¯p backward scattering for c.m. energies between 1915 and 1950 MeV. This limit is smaller than the expected contribution from diffraction scattering. The energy dependence of the 180° p¯p elastic cross section in this energy range cannot therefore be directly related to the formation of s-channel resonances.
CROSS SECTION ONLY FOR ANNIHILATION EVENTS WITH EMISSION OF SPECTATOR PROTON TOO SLOW TO GIVE A VISIBLE TRACK (LESS THAN ABOUT 80 MEV/C) - ABOUT 60 PCT OF TOTAL ANNILILATION. NUMERICAL VALUES TAKEN FROM TABLE 2 OF R. BIZZARRI ET AL., NC 22A, 225 (1974).
We present data from a spark-chamber study of K+p elastic scattering between 432 and 939 MeV/c, over the range −0.6<cosθc.m.<+0.7. With measurements at 13 momenta, and between 2000 events at the lowest momentum and 5000 events at the highest momentum, there is a major improvement over previous data. The elastic cross sections deduced from the differential cross sections are almost independent of momentum through the range covered. The data are inconsistent with counter measurements of the total cross section which suggest a sharp shoulder in the cross section at about 700 MeV/c.
No description provided.
No description provided.
No description provided.
Measurements of the differential cross section for the reactions π+p→K+Σ+ and π+p→K+Y*+(1385) are reported at 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 10.0, and 14.0 GeV/c. Polarization in π+p→K+Σ+ is also reported at 6.0, 10.0, and 14.0 GeV/c. At small |t|, the cross section for π+p→K+Σ+ is well described by an exponential Aebt with slopes in the range b≈8−10 (GeV/c)−2; for |t|>0.5 (GeV/c)2 this slope decreases considerably. The cross section for π+p→K+Y*+(1385) is well described for |t|>0.2 (GeV/c)2 by a single exponential of slope about half that for π+p→K+Σ+; there is no break near |t|>0.5 (GeV/c)2. We observe a dip in this cross section near t=0. The polarization in π+p→K+Σ+ is consistent with zero for |t|<0.4 (GeV/c)2 and becomes large and positive for larger |t|.
No description provided.
No description provided.
No description provided.