Decays of the Higgs boson into a Z boson and a J/$\psi$ or $\psi$(2S) meson are searched for in four-lepton final states with the CMS detector at the LHC. A data set of proton-proton collisions corresponding to an integrated luminosity of 138 fb$^{-1}$ is used. Using the same data set, decays of the Higgs and Z boson into quarkonium pairs are also searched for. An observation of such decays with this sample would indicate the presence of physics beyond the standard model. No evidence for these decays has been observed and upper limits at the 95% confidence level are placed on the corresponding branching fractions ($\mathcal{B}$). Assuming longitudinal polarization of the Higgs boson decay products, 95% confidence level observed upper limits for $\mathcal{B}$(H $\to$ J/$\psi$) and $\mathcal{B}$(H $\to$ Z$\psi$(2S)) are 1.9$\times$10$^{-3}$ and 6.6$\times$10$^{-3}$, respectively.
Exclusion limits at 95% CL on the branching fractions ($\mathcal{B}$s) of the $H$ and $Z$ boson decays. The second column lists the observed limits for the case that both intermediate particles are longitudinally polarized. The third column shows the median expected limits with the upper and lower bounds in the expected 68% CL intervals. The last two columns list observed upper limits for unpolarized and transversely polarized intermediate particles.
Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p$-$p$-$p and p$-$p$-\Lambda$ systems in terms of three-particle correlation functions carried out for pp collisions at $\sqrt{s} = 13$ TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p$-$p$-$p system, hinting to the presence of a residual three-body effect while for p$-$p$-\Lambda$ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.
The (p-p)-p correlation function obtained using the data-driven approach
The (p-p)-$\Lambda$ correlation function obtained using the data-driven approach
The p-(p-$\Lambda$) correlation function obtained using the data-driven approach
Fluctuation measurements are important sources of information on the mechanism of particle production at LHC energies. This article reports the first experimental results on third-order cumulants of the net-proton distributions in Pb$-$Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector. The results on the second-order cumulants of net-proton distributions at $\sqrt{s_{\rm NN}} = 2.76$ and $5.02$ TeV are also discussed in view of effects due to the global and local baryon number conservation. The results demonstrate the presence of long-range rapidity correlations between protons and antiprotons. Such correlations originate from the early phase of the collision. The experimental results are compared with HIJING and EPOS model calculations, and the dependence of the fluctuation measurements on the phase-space coverage is examined in the context of lattice quantum chromodynamics (LQCD) and hadron resonance gas (HRG) model estimations. The measured third-order cumulants are consistent with zero within experimental uncertainties of about 4% and are described well by LQCD and HRG predictions.
Delta_eta dependence of Kappa_2(pi+-pi-)/<pi++pi>, momentum range: 0.6 < p < 1.5 GeV/c.
Delta_eta dependence of Kappa_2(K+-K-)/<K++K->, momentum range: 0.6 < p < 1.5 GeV/c.
Delta_eta dependence of Kappa_2(p-pbar)/<p+pbar>, momentum range: 0.6 < p < 1.5 GeV/c.
This Letter reports on the first measurements of transverse momentum dependent flow angle $\Psi_n$ and flow magnitude $v_n$ fluctuations, determined using new four-particle correlators. The measurements are performed for various centralities in Pb-Pb collisions at a centre-of-mass energy of $\sqrt{s_{\rm NN}}$ = 5.02 TeV with ALICE at the LHC. Both flow angle and flow magnitude fluctuations are observed in the presented centrality ranges and are strongest in the most central collisions and for a transverse momentum $p_{\rm T}>2$ GeV/$c$. Comparison with theoretical models, including iEBE-VISHNU, MUSIC, and AMPT, show that the measurements bring novel insights into the fluctuating initial conditions that are not well known. In addition, these new results exhibit unique sensitivities to the specific shear viscosity, $\eta/s$, of the quark--gluon plasma (QGP) and to the initial state of the heavy-ion collisions. As such fluctuations are getting stronger with increasing $p_{\rm T}$, a re-examination of existing models is needed to have a more precise and unbiased extraction of properties of the QGP.
The flow angle fluctuation $A_{\rm 2}^{\rm f}$ as a function of $p_{\rm T}^{\rm a}$ in different centrality classes
The flow magnitude fluctuation $M_{\rm 2}^{\rm f}$ as a function of $p_{\rm T}^{\rm a}$ in different centrality classes
Lower (upper) limit of flow angle (magnitude) fluctuations and flow vector fluctuations as a function of centrality for 3.0 < $p_{\rm T}^{\rm a}$ < 4.0 GeV/$c$
The first measurements of elliptic flow of $\pi^\pm$, ${\rm K}^\pm$, p+$\overline{\rm p}$, ${\rm K_{S}^0}$, $\Lambda$+$\overline{\Lambda}$, $\phi$, $\Xi^-$+$\Xi^+$, and $\Omega^-$+$\Omega^+$ using multiparticle cumulants in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented. Results obtained with two- ($v_2\{2\}$) and four-particle cumulants ($v_2\{4\}$) are shown as a function of transverse momentum, $p_{\rm T}$, for various collision centrality intervals. Combining the data for both $v_2\{2\}$ and $v_2\{4\}$ also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark-gluon plasma. The characteristic features observed in previous $p_{\rm T}$-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low $p_{\rm T}$ and the approximate scaling with the number of constituent quarks at intermediate $p_{\rm T}$, are similarly present in the four-particle correlations and the combinations of $v_2\{2\}$ and $v_2\{4\}$. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide $p_{\rm T}$ range.
The $p_{T}$-differential $v_2$ measured with two-particle correlations with a pseudorapidity gap of $|\Delta \eta| > 0.8$ for different particle species and centralities in Pb--Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV.
The $p_{T}$-differential $v_2$ measured with two-particle correlations with a pseudorapidity gap of $|\Delta \eta| > 0.8$ for different particle species and centralities in Pb--Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV.
The $p_{T}$-differential $v_2$ measured with two-particle correlations with a pseudorapidity gap of $|\Delta \eta| > 0.8$ for different particle species and centralities in Pb--Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV.
We present an observation of photon-photon production of $\tau$ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 $\mu$b$^{-1}$ collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The $\gamma\gamma$$\to$$\tau^+\tau^-$ process is observed for $\tau\tau$ events with a muon and three charged hadrons in the final state. The measured fiducial cross section is $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$ = 4.8 $\pm$ 0.6 (stat) $\pm$ 0.5 (syst) $\mu$b, in agreement with leading-order QED predictions. Using $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$, we estimate a model-dependent value of the anomalous magnetic moment of the $\tau$ lepton of $a_\tau$ = 0.001 $^{+0.055}_{-0.089}$.
$\gamma\gamma\to\tau\tau$ fiducial cross section
$\gamma\gamma\to\tau\tau$ fiducial cross section
Limits on anomalous magnetic moment of the tau lepton
The measurement of the production of ${\rm f}_{0}(980)$ in inelastic pp collisions at $\sqrt{s} = 5.02$ TeV is presented. This is the first reported measurement of inclusive ${\rm f}_{0}(980)$ yield at LHC energies. The production is measured at midrapidity, $|y| < 0.5$, in a wide transverse momentum range, $0 < p_{\rm T} < 16$ GeV/$c$, by reconstructing the resonance in the ${\rm f}_{0}(980) \rightarrow \pi^{+}\pi^{-}$ hadronic decay channel using the ALICE detector. The $p_{\rm T}$-differential yields are compared to those of pions, protons and $\phi$ mesons as well as to predictions from the HERWIG 7.2 QCD-inspired Monte Carlo event generator and calculations from a coalescence model that uses the AMPT model as an input. The ratio of the $p_{\rm T}$-integrated yield of ${\rm f}_{0}(980)$ relative to pions is compared to measurements in ${\rm e}^{+}{\rm e}^{-}$ and pp collisions at lower energies and predictions from statistical hadronisation models and HERWIG 7.2. A mild collision energy dependence of the ${\rm f}_{0}(980)$ to pion production is observed in pp collisions from SPS to LHC energies. All considered models underpredict the $p_{\rm T}$-integrated $2{\rm f}_{0}(980)/(\pi^{+}+\pi^{-})$ ratio. The prediction from the canonical statistical hadronisation model assuming a zero total strangeness content of ${\rm f}_{0}(980)$ is consistent with the data within 1.9$\sigma$ and is the closest to the data. The results provide an essential reference for future measurements of the particle yield and nuclear modification in p$-$Pb and Pb$-$Pb collisions, which have been proposed to be instrumental to probe the elusive nature and quark composition of the ${\rm f}_{0}(980)$ scalar meson.
$p_{\rm T}$-differential yields of $f_{0}(980)$ at midrapidity in the inelastic pp collisions at $\sqrt(s)$ = 5.02 TeV. The uncertainty 'syst' indicates the total systematic uncertainty and 'stat' indicates the statistical uncertainty. The branching ratio correction amounts to BR = (46 $\pm$ 6)% [ Phys. Rev. Lett. 111 no. 6, (2013) 062001] assuming dominance of $\pi\pi$ and KK channel has been applied to the $p_{\rm T}$-differential yields of $f_{0}(980)$. The normalisation and branching ratio relative uncertainties on the yields are independent of $p_{\rm{T}}$ and amount to 2.5% and 13%, respectively and therefore not included in the $p_{\rm T}$-differential yields of $f_{0}(980)$.
$p_{\rm T}$-integrated yield of $f_{0}(980)$, dN/dy at midrapidity as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$. The uncertainty 'syst' indicates the total systematic uncertainty on the measurement. The branching ratio correction amounts to BR = (46 $\pm$ 6)% [ Phys. Rev. Lett. 111 no. 6, (2013) 062001] assuming dominance of $\pi\pi$ and KK channel has been applied to the $p_{\rm T}$-differential yields of $f_{0}(980)$. Here, the branching ratio relative uncertainty (13%) for $f_{0}(980)$ is not included.
mean-$p_{\rm{T}}$ of $f_{0}(980)$, (<$p_{\rm{T}}$>) at midrapidity as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$. The uncertainty 'syst' indicates the total systematic uncertainty on the measurement.
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
A precise measurement of the invisible width of the Z boson produced in proton-proton collisions at a center-of-mass energy of 13 TeV is presented using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The result is obtained from a simultaneous fit to kinematic distributions for two data samples of Z boson plus jets: one dominated by Z boson decays to invisible particles and the other by Z boson decays to muon and electron pairs. The invisible width is measured to be 523 $\pm$ 3 (stat) $\pm$ 16 (syst) MeV. This result is the first precise measurement of the invisible width of the Z boson at a hadron collider, and is the single most precise direct measurement to date, competitive with the combined result of the direct measurements from the LEP experiments.
Measured Z invisible width.
Systematic uncertainties on Z invisible width.
The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision data set recorded at $\sqrt{s}$ = 13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb$^{-1}$. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective $\mu\mu$ Majorana neutrino mass of 10.8 GeV.
Distribution of $H_T / p_{T}^{\mu_{1}}$ for signals, backgrounds and data. The bins are used in the simultaneous fit. The bins 1-4 show the events in the high-$\Delta\Phi_{ll}$ signal region (SR), the bins 5-7 show the events in the low-$\Delta\Phi_{ll}$ SR, the bins 8-11 show the events in the low-$p_T^{miss}$ SR, the bins 12-15 show the events in the high-$p_T^{miss}$ SR, the bins 16-19 show the events in the b-tagged control region (CR), the bins 20-23 show the events in the high-$\Delta\Phi_{ll}$ and $p_T^{miss}$ CR, and the bins 24-26 show the events in the WZ CR, and the bins 31-33 show the events in the WZb CR. The predicted background yields are shown with their best fit normalizations from the simultaneous fit for the signal+background hypothesis. The signal yields are their expected yields from simulation, which are scaled by the some fators as from the plots. Vertical bars on data points represent the statistical uncertainty in the data. Vertical bars on total backgrounds represent the statistical+systematic uncertainties. Vertical bars on the signals represent the statistical+systematic uncertainties. The histograms for TVX backgrounds include the contributions from ttV and tZq processes. The histograms for other backgrounds include the contributions from double parton scattering, VVV. The overflow is included in the last bin in each corresponding region.
Exclusion limits on the squared mixing element between the muon and the heavy Majorana neutrino, as a function of the mass of the heavy Majorana neutrino.
Distribution of $H_T / p_{T}^{\mu_{1}}$ for signals, backgrounds and data. The bins are used in the simultaneous fit. The bins 1-4 show the events in the high-$\Delta\Phi_{ll}$ signal region (SR), the bins 5-7 show the events in the low-$\Delta\Phi_{ll}$ SR, the bins 8-11 show the events in the low-$p_T^{miss}$ SR, the bins 12-15 show the events in the high-$p_T^{miss}$ SR, the bins 16-19 show the events in the b-tagged control region (CR), the bins 20-23 show the events in the high-$\Delta\Phi_{ll}$ and $p_T^{miss}$ CR, and the bins 24-26 show the events in the WZ CR, and the bins 31-33 show the events in the WZb CR. The predicted background yields are the expected yields. The signal yields are their expected yields from simulation, which are scaled by the some fators as from the plots. Vertical bars on data points represent the statistical uncertainty in the data. Vertical bars on total backgrounds represent the statistical+systematic uncertainties. Vertical bars on the signals represent the statistical+systematic uncertainties. The histograms for TVX backgrounds include the contributions from ttV and tZq processes. The histograms for other backgrounds include the contributions from double parton scattering, VVV. The overflow is included in the last bin in each corresponding region.