Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

7 data tables

The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

More…

MEASUREMENTS OF CROSS-SECTIONS AND CHARGE ASYMMETRIES FOR e+ e- ---> tau+ tau- AND e+ e- ---> mu+ mu- FOR S**(1/2) FROM 52-GeV TO 57-GeV

The AMY collaboration Bacala, A. ; Malchow, R.L. ; Sparks, K. ; et al.
Phys.Lett.B 218 (1989) 112-118, 1989.
Inspire Record 265797 DOI 10.17182/hepdata.51370

Measurements of the differential cross sections for e + e − →μ + μ − and e + e − →τ + τ − at values of s from 52 to 57 GeV are reported. The forward-backward asymmetries and the total cross sections for these reactions are found to be in agreement with predictions of the standard model of the electro-weak interactions. These measurements are used to extract values of the weak coupling constant g v e g v l and g A e g A l , where l = μ or τ .

11 data tables

Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).

Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).

No description provided.

More…

Measurement of $g$(a) and $g(V$), the Neutral Current Coupling Constants to Leptons

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 236 (1990) 109-115, 1990.
Inspire Record 283470 DOI 10.17182/hepdata.29715

We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.

2 data tables

No description provided.

No description provided.


Precise measurement of the e+ e- ---> mu+ mu- reaction at s**(1/2) = 57.77-GeV

The VENUS collaboration Miura, M. ; Odaka, S. ; Arima, T. ; et al.
Phys.Rev.D 57 (1998) 5345-5362, 1998.
Inspire Record 452097 DOI 10.17182/hepdata.27142

The reaction e+e−→μ+μ− has been measured at s=57.77GeV, based on 289.6±2.6 pb−1 data collected with the VENUS detector at TRISTAN. The production cross section is measured in bins of the production angle within an angular acceptance of |cosθ|<~0.75, according to a model-independent definition. The result is consistent with the prediction of the standard electroweak theory. Although a trend in measurements at lower energies that the total cross section tends to be smaller than the prediction remains, the discrepancy is not significant. The model-independent result is converted to the differential cross section in the effective-Born scheme by unfolding photon-radiation effects. This result can be extrapolated to quantities for the full solid angle as σtotEB=30.05±0.59 pb and AFBEB=−0.350±0.017, by imposing an ordinary assumption on the production-angle dependence. The converted results are used to set constraints on extensions of the standard theory. S-matrix parametrization, and possible contributions from contact interactions and heavy neutral-scalar exchanges are examined.

3 data tables

Primary model-independant results.

Differential cross section in the effective-Born scheme.

Total cross section and forward backward asymmetry results in the effective-Born scheme.


Experimental Limits on the Strength of Weak Neutral Currents in Lepton Pair Production at {PETRA} Energies

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 99 (1981) 281-286, 1981.
Inspire Record 156813 DOI 10.17182/hepdata.27121

The processes e + e − → e + e − and μ + μ − have been studied at PETRA using the JADE detector. The data, which were collected at s -values of up to 1300 GeV 2 have been analysed in terms of an electro-weak extension of QED to obtain values for the weak vector and axial vector couplings in the lepton sector. The values obtained agree with the predictions of the standard Salam-Weinberg model and the data are further analysed in terms of this model to obtain the limits 0.10 < sin 2 ϑ w < 0.40 (68% CL). The mass of the neutral weak gauge boson is deduced to be greater than 51 GeV/ c 2 .

3 data tables

No description provided.

No description provided.

No description provided.


New Results on the Reaction $e^+ e^- \to \mu^+ \mu^-$ at $\sqrt{s}=29$-{GeV}

Derrick, M. ; Fernandez, E. ; Fries, R. ; et al.
Phys.Rev.D 31 (1985) 2352, 1985.
Inspire Record 212767 DOI 10.17182/hepdata.3935

We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.

4 data tables

Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.

Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.

No description provided.

More…

New Results on $e^+ e^- \to \mu^+ \mu^-$ From the Jade Detector at {PETRA}

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Z.Phys.C 26 (1985) 507, 1985.
Inspire Record 204492 DOI 10.17182/hepdata.16141

The production of collinear muon pairs has been studied using the JADE detector at thee+e− storage ring at PETRA. Results for the total cross section and the angular distribution were obtained at centre of mass (cm) energies ranging from 12 to 46 GeV. The data correspond to an integrated luminosity offLdt>90 pb−1, of which 71.2 pb−1 were taken at\(\left\langle {\sqrt s } \right\rangle \)=34.4 GeV and 17 pb−1 at\(\left\langle {\sqrt s } \right\rangle \)=42.4 GeV. The results are compared to electroweak theories, in particular the “Standard Model”.

6 data tables

QED comparison is to point like cross section.

Angular distributions - data requested from authors.

Forward-backward asymmetry calculated from a fit to the angular distribution of the form 1: + cos(theta)**2 + Bcos(theta).. Asymmetries quoted here are extrapolated to full solid angle. The asymmetry at sqrt(s) = 34.4 is -11.10 +- 1.75 +- 1.0 pct if the end-cap points are included.

More…

Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

3 data tables

Comparison of Bhabhas with QED.

Muon angular distributions.

Forward-backward asymmetry from full angular range.


Electroweak Effects in $e^+ e^- \to \mu^+ \mu^-$ at 29-{GeV}

Fernandez, E. ; Ford, William T. ; Read, Alexander L. ; et al.
Phys.Rev.Lett. 50 (1983) 1238, 1983.
Inspire Record 188749 DOI 10.17182/hepdata.20560

A measurement of the cross section for production of collinear muon pairs based upon a sample of about 3000 events observed in the MAC detector at the storage ring PEP is presented. From the angular asymmetry Aμμ=0.076±0.018 the axial-vector weak neutral coupling is found to be given by gAegAμ=0.31±0.08.

2 data tables

Data on non-collinearity and angular distribution.

Asymmetry measurement based on extrapolation of number of events to 4 PI acceptance.


Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV to 209-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 33 (2004) 173-212, 2004.
Inspire Record 628491 DOI 10.17182/hepdata.43174

Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.

18 data tables

CM energy values.

Measured cross section for QUARK QUARKBAR (HADRON) production. The data are corrected to no interference between initial and final state radiation.

Measured cross section for MU+ MU- production. The data are corrected to no interference between initial and final state radiation.

More…