Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
JHEP 05 (2011) 126, 2011.
Inspire Record 894309 DOI 10.17182/hepdata.66147

Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\leq x\leq 0.9$ and 0.1 GeV$^2\leq Q^2\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.

3 data tables

Results on the differential Born cross section $\frac{d^2\sigma^p}{dx\,dQ^2}$ and $F_2^p$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies) are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle {Q^2} \rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.6 %. The structure function $F_2^p$ is derived using the parameterization $R=R_{1998}$.

Results on the differential Born cross section $\frac{d^2\sigma^d}{dx\,dQ^2}$ and $F_2^d$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies), are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle{Q^2}\rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.5 %. The structure function $F_2^d$ is derived using the parameterization $R=R_{1998}$.

Results on the inelastic Born cross-section ratio ${\sigma^d}/{\sigma^p}$. The statistical uncertainty $\delta_{stat.}$, the systematic uncertainty $\delta_{rad.}$ due to radiative corrections and $\delta_{model}$ due to the model dependence outside the acceptance are given in percent. The average values of $x$ and $Q^2$ are listed in the first two columns. The overall normalization uncertainty is 1.4$\%$.


INCLUSIVE CHARGED CURRENT ANTI-NEUTRINO - NUCLEON INTERACTIONS AT HIGH-ENERGIES

The Fermilab-Serpukhov-Moscow-Michigan collaboration Ammosov, V.V. ; Denisov, A.G. ; Gapienko, G.S. ; et al.
Nucl.Phys.B 199 (1982) 399-423, 1982.
Inspire Record 167339 DOI 10.17182/hepdata.41220

We present results on the experimental study of inelastic charged-current antineutrino-nucleon scattering in the energy range of 10–200 GeV. The data sample, consisting of about 6500 antineutrino-induced events, was obtained in the Fermilab 15 ft bubble chamber filled with a heavy neon-hydrogen mixture. The differential cross sections for ν μ N interactions are presented in terms of scaling variables x and y . The structure functions F 2 ν and xF 3 ν have been evaluated as functions of x and E ν . A deviation from the scaling hypothesis, similar to those found in other experiments on inelastic lepton-nucleon scattering, has been observed. The data are interpreted in the framework of the quark-parton model. Quark and antiquark distributions and their energy dependences are presented.

21 data tables

No description provided.

No description provided.

No description provided.

More…

Nucleon Structure Functions from High-Energy Neutrino Interactions with Iron and QCD Results

MacFarlane, D. ; Purohit, M.V. ; Messner, R.L. ; et al.
Z.Phys.C 26 (1984) 1-12, 1984.
Inspire Record 195928 DOI 10.17182/hepdata.16212

Nucleon structure functions obtained from neutrino and anti-neutrino scattering on iron nuclei at high energies (Ev=30 to 250 GeV) are presented. These results are compared with the results of other lepton-nucleon scattering experiments. The structure functions are used to test the validity of the Gross-Llewellyn-smith sum rule, which measures the number of valence quarks in the nucleons, and to obtain leading and second order QCD fits.

19 data tables

Measured charged current total cross section.

No description provided.

No description provided.

More…

Neutrino and anti-neutrinos Charged Current Inclusive Scattering in Iron in the Energy Range 20-GeV < Neutrino Energy < 300-GeV

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Z.Phys.C 17 (1983) 283, 1983.
Inspire Record 182549 DOI 10.17182/hepdata.2213

Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.

50 data tables

ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

More…