A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

A Measurement of the electroweak couplings of up and down type quarks using final state photons in hadronic z0 decays

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 264 (1991) 219-232, 1991.
Inspire Record 316154 DOI 10.17182/hepdata.48516

The production rate of final state photons in hadronic Z 0 decays is measured as a function of y cut = M ij 2 / E cm 2 the jet resolution parameter and minimum mass of the photon-jet system. Good agreement with the theoretical expectation from an O( αα s ) matrix element calculation is observed. Comparing the measurement and the prediction for y cut = 0.06, where the experimental systematic and statistical errors and the theoretical uncertainties are small, and combining this measurement with our result for the hadronic width of the Z 0 , we derived partial widths of up and down type quarks to be Γ u = 333 ± 55 ± 72 MeV and Γ d = 358 ± 37 ± 48 MeV in agreement with the standard model expectations. We compare our yield with the QCD shower models including photon radiation. At low γ cut JETSET underestimates the photon yield, and ARIADNE describes the production rate well.

2 data tables

It is assumed that the couplings of various up quarks to be the same.

It is assumed that the couplings of various down type quarks to be the same.


A Search for jet handedness in hadronic Z0 decays

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.Lett. 74 (1995) 1512-1516, 1995.
Inspire Record 378343 DOI 10.17182/hepdata.19666

We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}

1 data table

Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.


A Study of Jet Production Rates and a Test of QCD on the Z0 Resonance

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 389-398, 1990.
Inspire Record 283783 DOI 10.17182/hepdata.29753

Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e + e − annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( α s 2 ) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ MS and of the renormalization scale μ 2 in O( α s 2 ) QCD results in values similar to those obtained in the continuum of e + e − annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of α s , as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.

1 data table

Data are corrected for final acceptance and resolution of the detector. No explicit corrections for hadronisation effects are applied.


A Study of mean subjet multiplicities in two and three jet hadronic Z0 decays

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 363-376, 1994.
Inspire Record 372997 DOI 10.17182/hepdata.48236

This paper describes an analysis of sub-jet multiplicities, which are expected to be sensitive to the properties of soft gluon radiation, in hadronic decays of theZ0. Two- and three-jet event samples are selected using thek⊥ jet clustering algorithm at a jet resolution scaley1. The mean sub-jet multiplicity as a function of the sub-jet resolution,y0, is determined separately for both event samples by reapplying the same jet algorithm at resolution scalesy0<y1. These measurements are compared with recent perturbative QCD calculations based on the summation of leading and next-to-leading logarithms, and with QCD Monte Carlo models. The analytic calculations provide a good description of the sub-jet multiplicity seen in three- and two-jet mvents in the perturbative region (y0≈y1)), and the measured form of the data is in agreement with the expectation based on coherence of soft gluon radiation. The analysis provides good discrimination between Monte Carlo models, and those with a coherent parton shower are preferred by the data. The analysis suggests that coherence effects are present in the data.

4 data tables

Ratio of multiplicities of sub-jets from 3 and 2 jet samples. Data are corrected to the hadron level and have combined statistical and systematic errors.

Sub-jet multiplicity for 3 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.

Sub-jet multiplicity for 2 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.

More…

A Study of the recombination scheme dependence of jet production rates and of alpha-s (m(Z0)) in hadronic Z0 decays

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 49 (1991) 375-384, 1991.
Inspire Record 299833 DOI 10.17182/hepdata.15085

The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.

9 data tables

Jet production rates using the E0 recombination scheme.

Jet production rates using the E recombination scheme.

Jet production rates using the p0 recombination scheme.

More…

A measurement of the QCD colour factors and a limit on the light gluino.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Z.Phys.C 76 (1997) 1-14, 1997.
Inspire Record 440051 DOI 10.17182/hepdata.34162

Using data collected from 1992 to 1995 with the ALEPH detector at LEP, a measurement of the colour factor ratios CA/CF and TF /CF and the strong coupling constant αs = CFαs(MZ)/(2π) has been performed by fitting theoretical predictions simultaneously to the measured differential two-jet rate and angular distributions in four-jet events. The result is found to be in excellent agreement with QCD, {fx4-1} Fixing CA/CF and TF/CF to the QCD values permits a determination of αs(MZ) and ηf, the number of active flavours. With this measurement the existence of a gluino with mass below 6.3 GeV/c2 is excluded at 95% confidence level.

3 data tables

Fit A: using all kinematical distributions. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.

Fit B: using all kinematical distributions, but QCD magnitudes for color factors are used: FA(DEF=NC/CF)) = 2.25 and TF/CF = 0.375. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.

Fit C: the QCD magnitudes for color factors and NF = 5 are used.


A measurement of the b-quark mass from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 18 (2000) 1-13, 2000.
Inspire Record 531468 DOI 10.17182/hepdata.49909

Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.

1 data table

No description provided.


A study of parton fragmentation in hadronic Z0 decays using Lambda Antilambda correlations.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 13 (2000) 185-195, 2000.
Inspire Record 474010 DOI 10.17182/hepdata.49312

The correlated production of Lambda and Lambdabar baryons has been studied using 4.3 million multihadronic Zo decays recorded with the OPAL detector at LEP. Di-lambda pairs were investigated in the full data sample and for the first time also in 2-jet and 3-jet events selected with the k_t algorithm. The distributions of rapidity differences from correlated Lambda-Lambdabar pairs exhibit short-range, local correlations and prove to be a sensitive tool to test models, particularly for 2-jet events. The JETSET model describes the data best but some extra parameter tuning is needed to improve agreement with the experimental results in the rates and the rapidity spectra simultaneously. The recently developed modification of JETSET, the MOdified Popcorn Scenarium (MOPS), and also HERWIG do not give satisfactory results. This study of di-lambda production in 2- and 3-jet events supports the short-range compensation of quantum numbers.

5 data tables

Average multipicity of LAMBDA pairs in hadronic events.

Average multipicity of LAMBDA pairs in 2-Jet events.

Average multipicity of LAMBDA pairs in 3-Jet events.

More…

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…