First Measurement of Form Factors of the Decay Xi0->Sigma+ e- anti-nu/e

The KTeV collaboration Alavi-Harati, A. ; Alexopoulos, T. ; Arenton, M. ; et al.
Phys.Rev.Lett. 87 (2001) 132001, 2001.
Inspire Record 556399 DOI 10.17182/hepdata.43756

We present the first measurement of the form factor ratios g1/f1 (direct axial-vector to vector), g2/f1 (second class current) and f2/f1 (weak magnetism) for the decay Xi0 -> Sigma+ e- anti-nu/e using the KTeV (E799) beam line and detector at Fermilab. From the Sigma+ polarization measured with the decay Sigma+ -> p pi0 and the e- - anti-nu/e correlation, we measure g1/f1 to be 1.32 +0.21-0.17(stat.) +/- 0.05(syst.), assuming the SU(3)f (flavor) values for g2/f1 and f2/f1. Our results are all consistent with exact SU(3)f symmetry.

1 data table

Vector(F1) to axial(G1) formfactor ratio. Total systematic error is 0.054.


Measurement of the Sigma- charge radius by Sigma- electron elastic scattering.

The SELEX collaboration Gough Eschrich, Ivo M. ; Kruger, H. ; Simon, J. ; et al.
Phys.Lett.B 522 (2001) 233-239, 2001.
Inspire Record 558329 DOI 10.17182/hepdata.42898

The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain <r^2> = (0.61 +/- 0.12 (stat.) +/- 0.09 (syst.)) fm^2. The proton and pi^- charge radii were measured as well and are consistent with results of other experiments. Our result agrees with the recently measured strong interaction radius of the Sigma^-.

1 data table

Total systematic errors are given.


Electroproduction of the Delta Resonance at High Momentum Transfer

Frolov, V.V. ; Adams, G.S. ; Ahmidouch, A. ; et al.
Phys.Rev.Lett. 82 (1999) 45-48, 1999.
Inspire Record 475116 DOI 10.17182/hepdata.41616

We studied the electroproduction of the Delta(1232) resonance via the reaction p(e,e'p)\pi0 at four-momentum transfers Qsq = 2.8 and 4.0 GeV^2. This is the highest Qsq for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for Delta to p-pi0$ were measured over a wide range of barycentric energies covering the resonance. The $N-\Delta$ transition form factor G*_M and ratios of resonant multipoles E{1+}/M{1+} and S{1+}/M{1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers.

4 data tables

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to magnetic dipole moment, respectively (see paper). Resonance only.

CONST(NAME=E1+/M1+) and CONST(NAME=S1+/M1+) are the ratios of the electric quadrupole moment to magnetic dipole moment and Coulomb quadrupole moment to ma gnetic dipole moment, respectively (see paper). Resonance + background.

More…

Neutron form-factors from quasielastic e d scattering

Bartel, W. ; Buesser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 30 (1969) 285-288, 1969.
Inspire Record 56662 DOI 10.17182/hepdata.45282

The reaction e+d→e′+n+p was studied at electron scattering angles θ ⩽ 35° for four-momentum transfers of 0.39, 0.565 and 0.78 (GeV/ c ) 2 . By recording electron-neutron and electron-proton coincidences, the ratio of the electron scattering cross sections on quasi-free neutrons and protons was determined. An estimate of the binding effects, based on a Chew-Low-extrapolation, was made. Values for the neutron form factors were derived.

2 data tables

Axis error includes +- 0.0/0.0 contribution (Due to the different effective solid angles for neutron and proton detection in the counters).

No description provided.


Electroproduction of pions near the $\Delta(1236)$ isobar and the form-factor $G^*_M(q^2)$ of the $({\gamma} N\Delta)$ vertex

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 28 (1968) 148-151, 1968.
Inspire Record 52791 DOI 10.17182/hepdata.45279

The cross section for inelastic electron-proton scattering was measured at incident electron energies of 1.5 to 6 GeV by magnetic analysis of the scattered electrons at angles between 10° and 35°. For invariant masses of the hardonic final state W ⩽ 1.4 GeV. the measured spectra are compared with theoretical predictions for electroproduction of the Δ(1236) isobar. The magnetic dipole transition form factor G ∗ M ( q 2 ) of the (γ N Δ)-vertex is derived for momentum transfers q 2 = 0.2 − 2.34 (GeV/ c ) 2 ard found to decrease more rapidly with q 2 than the proton form factors.

1 data table

Axis error includes +- 0.0/0.0 contribution.


Quasielastic Electron-Deuteron Scattering Between q$^2$=18f$^{-2}$ and 100f$^{-2}$

Albrecht, W. ; Behrend, H.J. ; Dorner, H. ; et al.
Phys.Lett.B 26 (1968) 642-644, 1968.
Inspire Record 53149 DOI 10.17182/hepdata.29312

Quasielastic e-d scattering measurements were performed up to q 2 = 100 fm −2 . Only the electron was detected. The ratio R= ( d 2 ω d Ω d E′) ed d ω d Ω) ep was measured at the quasielastic peak; the magnetic form factor G M N of the neutron was deduced using the assumption G E N = 0.

2 data tables

No description provided.

CONST(NAME=MU) is the magnetic moment. The magnetic formfarctor (GM) is evaluated ander assumption of GE=0.