Measurement of the neutral current cross section and F2 structure function for deep inelastic e+ p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 21 (2001) 443-471, 2001.
Inspire Record 557597 DOI 10.17182/hepdata.46774

The cross section and the proton structure function F2 for neutral current deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 30 pb-1. The data were collected in 1996 and 1997 at a centre-of-mass energy of 300 GeV. They cover the kinematic range 2.7 < Q^2 < 30000 GeV2 and 6.10^-5 < x < 0.65. The variation of F2 with x and Q2 is well described by next-to-leading-order perturbative QCD as implemented in the DGLAP evolution equations.

6 data tables

The electromagnetic structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The corrections to the structure function, F2(C=EM), in NC DIS scattering at Q**2 from 2.7 to 30000 GeV**2.

The relative uncertainties in the reduced cross section. See text of paper for more details. There is an additional 2 PCT overall normalization error not included, andan addtional uncertainty of 1 PCT at low Q**2.. DUNC - Uncorrelated systematic error. Correlated Systematic Errors:. D1 - positron finding and efficiency. D2 - positron scattering angle - A. D3 - positron scattering angle - B. D4 - positron energy scale. D5 - hadronic energy measurment - FCAL. D6 - hadronic energy measurment - BCAL. D7 - hadronic energy measurment - RCAL. D8 - hadronic energy flow - A. D9 - background subtractions. D10 - hadronic energy flow - B.

More…

Measurement of open beauty production in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 18 (2001) 625-637, 2001.
Inspire Record 537299 DOI 10.17182/hepdata.46847

The production and semi-leptonic decay of heavy quarks have been studied in the photoproduction process $e^+p -> e^+ + {dijet} + e^- + X with the ZEUS detector at HERA using an integrated luminosity of 38.5 ${\rm pb^{-1}}$. Events with photon-proton centre-of-mass energies, $W_{\gamma p}$, between 134 and 269 GeV and a photon virtuality, Q^2, less than 1 ${\rm GeV^2}$ were selected requiring at least two jets of transverse energy $E_T^{\rm jet1(2)} >7(6)$ GeV and an electron in the final state. The electrons were identified by employing the ionisation energy loss measurement. The contribution of beauty quarks was determined using the transverse momentum of the electron relative to the axis of the closest jet, $p_T^{\rm rel}$. The data, after background subtraction, were fit with a Monte Carlo simulation including beauty and charm decays. The measured beauty cross section was extrapolated to the parton level with the b quark restricted to the region of transverse momentum $p_T^{b} > p_T^{\rm min} =$ 5 GeV and pseudorapidity $|\eta^{b}| <$ 2. The extrapolated cross section is $1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.) ^{+0.2}_{-0.4} (ext.) {nb}$. The result is compared to a perturbative QCD calculation performed to next-to-leading order.

4 data tables

The differential distribution of PT(C=REL) for heavy quark decays. The second DSYS error is due to the energy scale uncertainty.

The differential distribution of X(C=GAMMA,OBS), the fraction of the photons momentum contributing to the production of the two highest transverse energy jets. The second DSYS error is due to the energy scale uncertainty.

Cross section for beauty production with a prompt electron in the restricted kinetic region.

More…

Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Nucl.Phys.B 596 (2001) 3-29, 2001.
Inspire Record 534829 DOI 10.17182/hepdata.46889

Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

5 data tables

The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.

More…

Measurement of dijet production in neutral current deep inelastic scattering at high Q**2 and determination of alpha(s).

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 507 (2001) 70-88, 2001.
Inspire Record 553352 DOI 10.17182/hepdata.46870

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).

13 data tables

The differential dijet cross section dsig/dZP1.

The differential dijet cross section dsig/dlog10(x).

The differential dijet cross section dsig/dlog10(xi).

More…

Measurement of the E(T,jet)**2/Q**2 dependence of forward-jet production at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 474 (2000) 223-233, 2000.
Inspire Record 508906 DOI 10.17182/hepdata.43875

The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.

2 data tables

Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.

Measured forward-jet x distribution.


W production and the search for events with an isolated high-energy lepton and missing transverse momentum at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 471 (2000) 411-428, 2000.
Inspire Record 503787 DOI 10.17182/hepdata.44142

A search for the leptonic decays of W bosons produced in the reaction e^+ p\to e^+ W^\pm X at a centre-of-mass energy of 300 GeV has been performed with the ZEUS detector at HERA using an integrated luminosity of 47.7 pb^-1 . Three events consistent with W\to e\nu decay are found, giving a cross section of 0.9 +1.0 -0.7 \pm 0.2 pb, in good agreement with the Standard Model prediction. The corresponding 95% C.L. upper limit on the cross section is 3.3 pb. A search for the decay W\to \mu\nu has a smaller selection efficiency and yields no candidate events. Limits on the cross section for W production with large hadronic transverse momentum have been obtained. A search for high-transverse-momentum isolated tracks in events with large missing transverse momentum yields results in good agreement with Standard Model expectations, in contrast to a recent report by the H1 collaboration of the observation of an excess of such events.

2 data tables

Measured cross section from three events.

95 PCT CONFIDENCE UPPER LIMIT TO THE PROCESS.


Measurement of exclusive omega electroproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 487 (2000) 273-288, 2000.
Inspire Record 528588 DOI 10.17182/hepdata.46936

The exclusive electroproduction of omega mesons, ep -> e omega p, has been studied in the kinematic range 3<Q^2<20 GeV^2, 40<W<120 GeV and |t|<0.6 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 37.7 pb^{-1}. The omega mesons were identified via the decay omega -> pi^+pi^-pi^0. The exclusive (ep -> e omega p) cross section in the above kinematic region is 0.108 +- 0.014(stat.) +- 0.026(syst.) nb. The reaction ep -> e phi p, phi -> pi^+pi^-pi^0, has also been measured. The cross sections, as well as the cross-section ratios omega/rho and omega/phi, are presented as a function of W and Q^2. Thus, for the first time, the properties of omega electroproduction can be compared to those of rho^0, phi and J/psi electroproduction at high W.

6 data tables

The cross sections for OMEGA and PHI electroproduction.

The corresponding photoproduction cross sections of OMEGA and PHI mesons. The RHO0 data is taken from a previous ZEUS publication (EPJ C6,603).

Ratio of the photoproduction cross sections.

More…

Measurement of the proton structure function F2 at very low Q**2 at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 487 (2000) 53-73, 2000.
Inspire Record 527095 DOI 10.17182/hepdata.46969

A measurement of the proton structure function F_2(x,Q^2) is presented in the kinematic range 0.045 GeV^2 < Q^2 < 0.65 GeV^2 and 6*10^{-7} < x < 1*10^{-3}. The results were obtained using a data sample corresponding to an integrated luminosity of 3.9pb^-1 in e^+p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F_2 are typically less than 4%. At the low Q^2 values of the present measurement, the rise of F_2 at low x is slower than observed in HERA data at higher Q^2 and can be described by Regge theory with a constant logarithmic slope. The dependence of F_2 on Q^2 is stronger than at higher Q^2 values, approaching, at the lowest Q^2 values of this measurement, a region where F_2 becomes nearly proportional to Q^2.

24 data tables

Measured values of F2 at Q**2 = 0.045 GeV**2 as a function of X.

Measured values of F2 at Q**2 = 0.065 GeV**2 as a function of X.

Measured values of F2 at Q**2 = 0.085 GeV**2 as a function of X.

More…

Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

22 data tables

The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.

The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

More…

Measurement of Dijet photoproduction at high transverse energies at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 11 (1999) 35-50, 1999.
Inspire Record 500491 DOI 10.17182/hepdata.43992

The cross section for dijet photoproduction at high transverse energies is presented as a function of the transverse energies and the pseudorapidities of the jets. The measurement is performed using a sample of ep-interactions corresponding to an integrated luminosity of 6.3 pb^(-1), recorded by the ZEUS detector.Jets are defined by applying a k_T-clustering algorithm to the hadrons observed in the final state. The measured cross sections are compared to next-to-leading order QCD calculations. In a kinematic regime where theoretical uncertainties are expected to be small, the measured cross sections are higher than these calculations.

24 data tables

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

More…

Measurement of high Q**2 neutral current e+ p deep inelastic scattering cross-sections at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 11 (1999) 427-445, 1999.
Inspire Record 500267 DOI 10.17182/hepdata.44100

The e^+p neutral-current deep inelastic scattering differential cross-sections $d\sigma/dQ^2$, for Q^2 > 400 GeV^2, $d\sigma/dx$ and $d\sigma/dy$, for Q^2 > 400, 2500 and 10000 GeV^2, have been measured with the ZEUS detector at HERA. The data sample of 47.7 pb^-1 was collected at a center-of-mass energy of 300 GeV. The cross-section, $d\sigma/dQ^2$, falls by six orders of magnitude between Q^2 = 400 and 40000 GeV^2. The predictions of the Standard Model are in very good agreement with the data. Complementing the observations of time-like Z^0 contributions to fermion-antifermion annihilation, the data provide direct evidence for the presence of Z^0 exchange in the space-like region explored by deep inelastic scattering.

7 data tables

The differential cross section as a function of Q**2.

The differential cross section as a function of x, the Bjorken x variable.

The differential cross section as a function of x, the Bjorken x variable.

More…

Exclusive electroproduction of rho0 and J / psi mesons at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 6 (1999) 603-627, 1999.
Inspire Record 475083 DOI 10.17182/hepdata.44217

Exclusive production of $\rho^0$ and $J/\psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $\rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/\psi$ data. Cross sections for exclusive $\rho^0$ and $J/\psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $\rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/\psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.

32 data tables

Exclusive RHO0 electro- and photo- production and cross sections as a function of Q**2 from the BPC data set.

Exclusive RHO0 electro- and photo- production cross section as a function of W from the BPC data set.

Exclusive RHO0 electro- and photo- production cross sections as a function of W from the DIS data set.

More…

ZEUS results on the measurement and phenomenology of F2 at low x and low Q**2.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 7 (1999) 609-630, 1999.
Inspire Record 475922 DOI 10.17182/hepdata.44218

Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.

15 data tables
More…

Measurement of elastic Upsilon photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 437 (1998) 432-444, 1998.
Inspire Record 473522 DOI 10.17182/hepdata.44207

The photoproduction reaction gamma p -> mu+ mu- p has been studied in ep interactions using the ZEUS detector at HERA. The data sample corresponds to an integrated luminosity of 43.2 pb^{-1}. The Upsilon meson has been observed in photoproduction for the first time. The sum of the products of the elastic Upsilon(1S), Upsilon(2S), Upsilon(3S) photoproduction cross sections with their respective branching ratios is determined to be 13.3 +- 6.0(stat.)^{+2.7}_{-2.3}(syst.) pb at a mean photon-proton centre of mass energy of 120 GeV. The cross section is above the prediction of a perturbative QCD model.

2 data tables

Unresolved UPSILON cross sections (times branching ratio to two muons).

Mean photoproduction cross section for UPSI(1S) production.


Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

24 data tables

Cross section for diffractive scattering.

Cross section for diffractive scattering.

Cross section for diffracitve scattering.

More…

Search for selectron and squark production in e+ p collisions at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 434 (1998) 214-230, 1998.
Inspire Record 472079 DOI 10.17182/hepdata.44314

We have searched for the production of a selectron and a squark in $e^+p$ collisions at a center-of-mass energy of 300 GeV using the ZEUS detector at HERA. The selectron and squark are sought in the direct decay into the lightest neutralino in the framework of supersymmetric extensions to the Standard Model which conserve R-parity. No evidence for the production of supersymmetric particles has been found in a data sample corresponding to 46.6~pb$^{-1}$ of integrated luminosity. We express upper limits on the product of the cross section times the decay branching ratios as excluded regions in the parameter space of the Minimal Supersymmetric Standard Model.

1 data table

No description provided.


Forward jet production in deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 239-252, 1999.
Inspire Record 470499 DOI 10.17182/hepdata.44288

The inclusive forward jet cross section in deep inelastic $e^+p$ scattering has been measured in the region of $x$--Bjorken, ~$4.5 \cdot 10^{-4}$~ to ~$4.5 \cdot 10^{-2}$. This measurement is motivated by the search for effects of BFKL--like parton shower evolution. The cross section at hadron level as a function of \xbj is compared to cross sections predicted by various Monte Carlo models. An excess of forward jet production at small \xbj is observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.

1 data table

The second systematic (DSYS) error is the correlated systematic error due to the scale uncertainty of the calorimeter.


Diffractive dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 5 (1998) 41-56, 1998.
Inspire Record 469534 DOI 10.17182/hepdata.44302

Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.

5 data tables

Differential cross section as a function of rapidity of the two highest Et jets in event.

Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.

Differential cross section as a function of invariant mass of the GAMMA P system.

More…

Measurement of jet shapes in high Q**2 deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 8 (1999) 367-380, 1999.
Inspire Record 468803 DOI 10.17182/hepdata.44312

The shapes of jets with transverse energies, E_T(jet), up to 45 GeV produced in neutral- and charged-current deep inelastic e+p scattering (DIS) at Q**2 > 100 GeV**2 have been measured with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the eta-phi plane with a cone radius of one unit. The jets become narrower as E_T(jet) increases. The jet shapes in neutral- and charged-current DIS are found to be very similar. The jets in neutral-current DIS are narrower than those in resolved processes in photoproduction and closer to those in direct-photon processes for the same ranges in E_T(jet) and jet pseudorapidity. The jet shapes in DIS are observed to be similar to those in e+e- interactions and narrower than those in pbarp collisions for comparable E_T(jet). Since the jets in e+e- interactions and e+p DIS are predominantly quark initiated in both cases, the similarity in the jet shapes indicates that the pattern of QCD radiation within a quark jet is to a large extent independent of the hard scattering process in these reactions.

24 data tables

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

More…

Measurement of inelastic J / psi photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 76 (1997) 599-612, 1997.
Inspire Record 446830 DOI 10.17182/hepdata.44512

We present a measurement of the inelastic, non diffractive J/$\psi$ photoproduction cross section in the reaction $e^{+} p \to e^{+} {J}/\psi X$ with the ZEUS detector at HERA. The J/$\psi$ was identified using both the $\mu^{+}\mu^{-}$ and $e^{+}e^{-}$ decay channels and events were selected within the range $0.4<z<0.9$ ($0.5<z<0.9$) for the muon (electron) decay mode, where $z$ is the fraction of the photon energy carried by the J/$\psi$ in the proton rest frame. The cross section, the $p^2_T$ and the $z$ distributions, after having subtracted the contributions from resolved photon and diffractive proton dissociative processes, are given for the photon-proton centre of mass energy range $50<W<180$ GeV; $p^2_T$ is the square of the J/$\psi$ transverse momentum with respect to the incoming proton beam direction. In the kinematic range $0.4 < z < 0.9$ and $p^2_T > 1$ GeV$^2$, NLO calculations of the photon-gluon fusion process based on the colour-singlet model are in good agreement with the data. The predictions of a specific leading order colour-octet model, as formulated to describe the CDF data on J/$\psi$ hadroproduction, are not consistent with the data.

13 data tables

Cross section for the MU+ MU- decay channel.

Cross section for the MU+ MU- decay channel.

Cross section for the MU+ MU- decay channel.

More…

Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 109-122, 1998.
Inspire Record 450085 DOI 10.17182/hepdata.44384

Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.

28 data tables

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 6 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 8 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 11 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

More…

Observation of scaling violations in scaled momentum distributions at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 414 (1997) 428-443, 1997.
Inspire Record 449531 DOI 10.17182/hepdata.44514

Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of $x$ and $Q^2$ using the ZEUS detector. The evolution of the scaled momentum, $x_p$, with $Q^2,$ in the range 10 to 1280 $GeV^2$, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of $Q^2$.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic and proton dissociative rho0 photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 2 (1998) 247-267, 1998.
Inspire Record 452353 DOI 10.17182/hepdata.44331

Elastic and proton-dissociative rho0 photoproduction (gamma p-->rho0 p,gamma p -->rho0 N,with rho0-->pi+pi-) has been studied in ep interactions at HERA for gamma-p centre-of-mass energies in the range 50<W<100 GeV and for |t|<0.5 GeV2; the results on the p-dissociative reaction are presented for masses of the dissociated proton system in the range MN^2<0.1W^2.For the elastic process,the pi+pi- invariant mass spectrum has been investigated as a function of t. As in fixed target experiments, the rho0 resonance shape is asymmetric;this asymmetry decreases with increasing |t|.The cross section has been studied as a function of W; a fit to the resonant part with the form W^a gives a=0.16\pm0.06(stat.) +0.11-0.15(syst.). The resonant part of the gamma p-->pi+pi- p cross section is 11.2\pm 0.1(stat.)+1.1-1.2 (syst.) mub at <W>=71.7 GeV. The t dependence of the cross section can be described by a function of the type Ae^(-b|t|+ct^2) with b=10.9\pm0.3(stat.)+1.0-0.5(syst.)GeV-2 and c=2.7\pm0.9(stat.)+1.9-1.7(syst.) GeV-4. The t dependence has also been studied as a function of W and a value of the slope of the pomeron trajectory 0.23\pm0.15(stat.)+0.10-0.07(syst.)GeV-2 has been deduced. The rho spin density matrix elements r^04_00,r^04_1-1 and Re[r^04_10] have been measured and found to be consistent with expectations based on SCHC. For p-dissociative pi+pi- photoproduction in the rho0 mass range, the distributions of the two-pion invariant mass, W and the polar and azimuthal angles of the pions in the helicity frame are the same within errors as those for the elastic process. The t distribution has been fitted to an exponential function with a slope parameter 5.8\pm0.3(stat.)\pm0.5(syst.)GeV-2. The ratio of the elastic to p-dissociative rho0 photoproduction cross section is 2.0\pm0.2(stat.)\pm0.7(syst.).

19 data tables

Integrated elastic rho0 photoproduction cross section.

Integrated elastic pi+ pi- photoproduction cross section.

Differential T distribution. Statistical errors only.

More…

High E(T) inclusive jet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 4 (1998) 591-606, 1998.
Inspire Record 467101 DOI 10.17182/hepdata.44376

Inclusive jet differential cross sections for the reaction e+ p --> e+ + jet + X with quasi-real photons have been measured with the ZEUS detector at HERA. These cross sections are given for the photon-proton centre-of-mass energy interval 134 < W < 277 GeV and jet pseudorapidity in the range -1 < eta(jet) < 2 in the laboratory frame. The results are presented for three cone radii in the eta-phi plane, R=1.0, 0.7 and 0.5. Measurements of dsigma/deta(jet) above various jet-transverse-energy thresholds up to 25 GeV and in three ranges of W are presented and compared to next-to-leading order (NLO) QCD calculations. For jets defined with R=1.0 differences between data and NLO calculations are seen at high eta(jet) and low E_T(jet). The measured cross sections for jets defined with R=0.7 are well described by the calculations in the entire measured range of eta(jet) and E_T(jet). The inclusive jet cross section for E_T(jet) > 21 GeV is consistent with an approximately linear variation with the cone radius R in the range between 0.5 and 1.0, and with NLO calculations.

15 data tables

Jet defining cone radius R = 1.0.

Jet defining cone radius R = 1.0.

Jet defining cone radius R = 1.0.

More…

Measurement of the diffractive structure function F2(D(4) ) at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 81-96, 1998.
Inspire Record 448663 DOI 10.17182/hepdata.44431

This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.

4 data tables

The measured distribution of T, the squared momentum transfer to the virtual pluton.

Slope of the T distribution.

The structure function F2(NAME=D4).

More…