Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Search for the decay K+ --> pi+ neutrino anti-neutrino

Adler, S. ; Atiya, M.S. ; Chiang, I-H. ; et al.
Phys.Rev.Lett. 76 (1996) 1421-1424, 1996.
Inspire Record 400971 DOI 10.17182/hepdata.50260

An upper limit on the branching ratio for the decay $K^+ \! \rightarrow \! \pi^+ \nu \overline{\nu}$ is set at $2.4 \times 10^{-9}$ at the 90\% C.L. using pions in the kinematic region $214~{\rm MeV}/c < P_\pi < 231~{\rm MeV}/c$. An upper limit of $5.2 \times 10^{-10}$ is found on the branching ratio for decays $K^+ \! \rightarrow \! \pi^+ X^0$, where $X^0$ is any massless, weakly interacting neutral particle. Limits are also set for cases where $M_{X^0}>0$.

1 data table

Here UNSPEC is any massless, weakly interacting neutral particle. The measured exposure for the data reported is 3.49E+11 kaons stopped in a target.


Measurement of Structure Dependent K^+ -> mu^+ nu gamma

The E787 collaboration Adler, S. ; Atiya, M.S. ; Chiang, I-H. ; et al.
Phys.Rev.Lett. 85 (2000) 2256-2259, 2000.
Inspire Record 525021 DOI 10.17182/hepdata.19424

We report the first measurement of a structure dependent component in the decay K^+ -> mu^+ nu gamma. Using the kinematic region where the muon kinetic energy is greater than 137 MeV and the photon energy is greater than 90 MeV, we find that the absolute value of the sum of the vector and axial-vector form factors is |F_V+F_A| =0.165 \pm 0.007 \pm 0.011. This corresponds to a branching ratio of BR(SD^+) = (1.33 \pm 0.12 \pm 0.18) \times 10^{-5}. We also set the limit -0.04 &lt; F_V-F_A &lt; 0.24 at 90% c.l.

1 data table

Q2 independence of the formfactors is assumed.


Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

135 data tables

Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.

More…

Determination of the relative branching ratios for p anti-p ---> pi+ pi- and p anti-p ---> K+ K-

The CPLEAR collaboration Adler, R. ; Angelopoulos, A. ; Apostolakis, A. ; et al.
Phys.Lett.B 267 (1991) 154-158, 1991.
Inspire Record 317491 DOI 10.17182/hepdata.48425

The ratio of the branching fractions for p p →K + K − and p p →π + π − was determined with the CPLEAR detector, by stopping antiprotons in a gaseous hydrogen target at 15 bar pressure. It was found to be BR(K + K − )/BR( π + π − )=0.205± 0.016. The fraction of P-wave annihilation at rest at this target density was deduced to be (38±9)%.

1 data table

CONST is the fraction of P-wave annihilation in gaseous hydrogen at pressu re of 15 bar. In the SIG/SIG the statistical and systematic errors are added qu adratically.


Exclusive electroproduction of Phi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 718 (2005) 3-31, 2005.
Inspire Record 679957 DOI 10.17182/hepdata.45894

Exclusive electroproduction of $\phi$ mesons has been studied in $e^\pm p$ collisions at $\sqrt{s}=318 \gev$ with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb$^{-1}$. The $\gamma^*p$ cross section is presented in the kinematic range $2<Q^2<70 \gev^2$, $35<W<145 \gev$ and ${|t|}<0.6 \gev^2$. The cross sections as functions of $Q^2$, $W$, $t$ and helicity angle $\theta_h$ are compared to cross sections for other vector mesons. The ratios $R$ of the cross sections for longitudinally and transversely polarized virtual photons are presented as functions of $Q^2$ and $W$. The data are also compared to predictions from theoretical models.

23 data tables

Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 2 to 3 GeV**2.

Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 3 to 5 GeV**2.

Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 5 to 9 GeV**2.

More…

First observation of a particle - anti-particle asymmetry in the decay of neutral kaons into pi0 pi0

The CPLEAR collaboration Adler, R. ; Alhalel, T. ; Angelopoulos, A. ; et al.
Z.Phys.C 70 (1996) 211-218, 1996.
Inspire Record 399741 DOI 10.17182/hepdata.48092

CP violation has been observed as a time-dependent rate asymmetry between the decays ${⩈erline K}^0 ⌝ghtarrow ≪^{0} ≪^{0}$ and K0 → π0π{0}, where the neutral kaons are produced with definite and individually known strangeness in ${⋏r p}p ⌝ghtarrow{⩈erline K}^0 K^+≪^- $ or p̅p → K0 K− π+. A special technique for the data analysis has been developed. The values obtained for ϕ00 and ¦ η00¦ are in agreement with those of previous measurements of CP violation.

1 data table

No description provided.


Diffractive Photoproduction of D*+/-(2010) at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 51 (2007) 301-315, 2007.
Inspire Record 747652 DOI 10.17182/hepdata.45627

Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.

12 data tables

Total cross section integrated over the given kinematic range.

Ratio of diffractive to inclusive D* cross section.

Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).

More…

Exclusive electroproduction of J/psi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 695 (2004) 3-37, 2004.
Inspire Record 647777 DOI 10.17182/hepdata.46277

The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.

20 data tables

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 0.15 to 0.18 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 2 to 5 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 5 to 10 GeV**2.

More…

Exclusive rho^0 production in deep inelastic scattering at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
PMC Phys.A 1 (2007) 6, 2007.
Inspire Record 757991 DOI 10.17182/hepdata.54963

Exclusive rho^0 electroproduction at HERA has been studied with the ZEUS detector using 120 pb^{-1} of integrated luminosity collected during 1996-2000. The analysis was carried out in the kinematic range of photon virtuality 2 < Q^2 < 160 GeV$^2, and gamma^* p centre-of-mass energy 32 < W < 180 GeV. The results include the Q^2 and W dependence of the gamma^* p --> rho^0 p cross section and the distribution of the squared-four-momentum transfer to the proton. The helicity analysis of the decay-matrix elements of the rho^0 was used to study the ratio of the gamma^* p cross section for longitudinal and transverse photon as a function of Q^2 and W. Finally, an effective Pomeron trajectory was extracted. The results are compared to various theoretical predictions.

30 data tables

Measurement of the spin density matrix element r_04_00 as a function of Q**2.

Measurement of the spin density matrix element RE(r_04_10) as a function of Q**2.

Measurement of the spin density matrix element r_04_1-1 as a function of Q**2.

More…