Search for CP violation in D0 and D+ decays.

The FOCUS collaboration Link, J.M. ; Paolone, V.S. ; Reyes, M. ; et al.
Phys.Lett.B 491 (2000) 232-239, 2000.
Inspire Record 527840 DOI 10.17182/hepdata.42984

A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.

3 data tables

All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D+ KK)=(N(Q=D+ KK)/N(Q=D+ K) - N(Q=D- KK)/N(Q=D- K))/(N(Q=D+ KK)/N(Q=D+ K) + N(Q=D- KK)/N(Q=D- K)).

All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 KK)=(N(Q=D0 KK)/N(Q=D0 K) - N(Q=DBAR0 KK)/N(Q=DBAR0 K))/(N(Q=D0 KK)/N(Q=D0 K) + N(Q=DBAR0 KK)/N(Q=DBAR0 K)).

All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 PIPI)=(N(Q=D0 PIPI) - N(Q=DBAR0 PIPI))/(N(Q=D0 PIPI) + N(Q=DBAR0 PIPI)).


Subthrehold K+ production in deuteron and alpha induced nuclear reactions.

Debowsky, M. ; Senger, P. ; Boivin, M. ; et al.
NUCL-EX-9709002, 1997.
Inspire Record 448262 DOI 10.17182/hepdata.31401

Double differential cross sections have been measured for pi+ and K+ emitted around midraidity in d+A and He+A collisions at a beam kinetic energy of 1.15 GeV/nucleon. The total pi+ yield increases by a factor of about 2 when using an alpha projectile instead of a deuteron whereas the K+ yield increases by a factor of about 4. According to transport calculations, the K+ enhancement depends both on the number of hadron-hadron collisions and on the energy available in those collisions: their center-of-mass energy increases with increasing number of projectile nucleons.

2 data tables

The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is PI+ kinectic energy in the nucleon-nucleon center of mass frame.

The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is K+ kinectic energy in the nucleon-nucleon center of mass frame.


Production of Multi - Pion Systems With Large Longitudinal Momentum at the {CERN} {ISR}

Lockman, William S. ; Meyer, T. ; Rander, J. ; et al.
Phys.Rev.Lett. 41 (1978) 680-683, 1978.
Inspire Record 6695 DOI 10.17182/hepdata.20814

Inclusive cross sections are presented for 2π and 3π systems with large longitudinal x at the highest intersecting storage ring energies (s=53 GeV for 2π; s=53 and 62 GeV for 3π). The ratio π+π−π−π− rises sharply with increasing x similar to the ratio K+K−, as expected in a quark-model interpretation.

2 data tables

The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).

The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).


The Missing Mass Squared Dependence of the Average Charged Particle Multiplicity in the Reaction K+ p --> K0 X++ from 5-GeV/c-16-GeV/c

Chliapnikov, P.V. ; Gerdyukov, L.N. ; Minaev, N.G. ; et al.
Phys.Lett.B 52 (1974) 375-380, 1974.
Inspire Record 90218 DOI 10.17182/hepdata.50028

The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.

1 data table

Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.


Production of chi charmonium via 300-GeV/c pion and proton interactions on a lithium target

The E705 collaboration Antoniazzi, L. ; Arenton, M. ; Cao, Z. ; et al.
Phys.Rev.D 49 (1994) 543-546, 1994.
Inspire Record 354743 DOI 10.17182/hepdata.42541

We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.

3 data tables

The cross section per nucleon.

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.


Search for Anti-proton - Nucleus States With ($\bar{p}$, $p$) Reactions

Garreta, D. ; Birien, P. ; Bruge, G. ; et al.
Phys.Lett.B 150 (1985) 95-99, 1985.
Inspire Record 203156 DOI 10.17182/hepdata.49641

We have studied (p̄, p) reactions on 12 C , 63 Cu, and 209 Bi to search for possible nuclear states formed ny antiprotons and nuclei. The experiments used the 180 MeV antiproton beam from LEAR, and the high-resolution magnetic spectrometer, SPES II, to detect the outgoing protons. No evidence of antiproton-nucleus states was found. The gross features of the proton spectra are reasonably well described by intranuclear cascade model calculations, which consider proton emission following antiproton annihilations in the target nucleus.

1 data table

Parameters resulting from the best fits to the proton spectra with the expression D2(SIG)/D(OMEGA)/D(E) = CONST*SQRT(E)*EXP(-E/SLOPE).


Transverse momentum of J / psi produced in oxygen uranium collisions at 200-GeV per nucleon.

The NA38 collaboration Baglin, C. ; Baldisseri, A. ; Bussiere, A. ; et al.
Phys.Lett.B 251 (1990) 465-471, 1990.
Inspire Record 306053 DOI 10.17182/hepdata.29526

The study of the J ψ transverse momentum distribution in oxygen-uranium reactions at 200 GeV/nucleon shows that 〈 P T 〉 and 〈 P T 2 〉 increase with the transverse energy of the reaction. Muon pairs in the mass continuum do not exhibit the same behaviour. The comparison of the J ψ production rates in central and peripheral collisions shows a significant diminution for low P T central events.

4 data tables

Two parametrization of the D(SIG)/D(PT) are used: first is : PT*exp(-SLOPE*PT**CONST(C=PT)) and second is : PT*exp(-2*MT/CONST(C=MT)).

D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).

D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).

More…

Forward - backward charge asymmetry of electron pairs above the Z0 pole

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 2616-2621, 1996.
Inspire Record 417098 DOI 10.17182/hepdata.50121

We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.

1 data table

The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.


Two measurements of B0 anti-B0 mixing using kaon tagging

The ARGUS collaboration Albrecht, H. ; Hamacher, T. ; Hofmann, R.P. ; et al.
Phys.Lett.B 374 (1996) 256-264, 1996.
Inspire Record 403080 DOI 10.17182/hepdata.28387

Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have made two measurements of the mixing parameter χ d using kaons as flavour tags. Using D ∗+ K ± correlations we found χ d = 0.20 ± 0.13 ± 0.12 and from the study of (D ∗+ ℓ − ) K ± correlations we obtained χ d = 0.19 ± 0.07 ± 0.09. The branching ratio for B → D ∗+ X has been updated: Br( B → D ∗+ X) = (19.6 ± 1.9) %. We have also determined the average multiplicity of charged kaons in B 0 decays to be 0.78 ± 0.08.

2 data tables

Mixing parameter from counting kaon events. First (...,C=D*+K+-) and second(...,C=(D*+LEPTON-)K+-) value are obtained from a study of D*+K+- and (D*+LEPTO N-)K+- correlations respectively. Second value and the value, reported in Phys.Lett. 324B (1994) 249, were averaged, result third value (...,C=COMBINED) of the mixing parameter in the table (see text for details). In the second value (...,C=(D*+LEPTON-)K+-) the first systematic error is due to the background estimation, the branching ratio for the process B --> K+(K-) X, experimental cuts, and the second one is due to to the uncertainty on the branching ratio for the processes D0 --> K+- X.

No description provided.


Transverse momentum spectra of charged particles in p anti-p collisions at s**(1/2) = 630-GeV

Bocquet, G. ; Norton, A. ; Wang, H.Q. ; et al.
Phys.Lett.B 366 (1996) 434-440, 1996.
Inspire Record 403649 DOI 10.17182/hepdata.48062

We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN collider. We have studied the production of charged particles with transverse momenta ( p T ) up to 25 GeV/c. The results are in agreement with QCD predictions. The rise of 〈 p T 〉 with charged particle multiplicity may be related to changing production of low p T particles.

11 data tables

No description provided.

No description provided.

No description provided.

More…