Multiplicity of charged secondaries emitted in association with neutral strange particles in antiproton nucleus collisions at 40-GeV/c.

Akhobadze, K.G. ; Grigalashvili, T.S. ; Chikovani, L.D. ; et al.
Phys.Atom.Nucl. 63 (2000) 834-838, 2000.
Inspire Record 533010 DOI 10.17182/hepdata.31228

In collisions of 40-GeV/c antiprotons with D, Li, C, S, Cu, and Pb nuclei, mean multiplicities of various secondary particles are investigated as functions of the mass number A. The mass-number dependence of the mean multiplicities of positively charged particles suggests that the effect of intranuclear cascades is strong for the emission of Λ hyperons, but that it is relatively weak for the emission of either K 0 or \(\bar \Lambda \). Also measured are the yields of various neutral strange particles with respect to those of charged secondaries.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Search for CP violation in D0 and D+ decays.

The FOCUS collaboration Link, J.M. ; Paolone, V.S. ; Reyes, M. ; et al.
Phys.Lett.B 491 (2000) 232-239, 2000.
Inspire Record 527840 DOI 10.17182/hepdata.42984

A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.

3 data tables

All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D+ KK)=(N(Q=D+ KK)/N(Q=D+ K) - N(Q=D- KK)/N(Q=D- K))/(N(Q=D+ KK)/N(Q=D+ K) + N(Q=D- KK)/N(Q=D- K)).

All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 KK)=(N(Q=D0 KK)/N(Q=D0 K) - N(Q=DBAR0 KK)/N(Q=DBAR0 K))/(N(Q=D0 KK)/N(Q=D0 K) + N(Q=DBAR0 KK)/N(Q=DBAR0 K)).

All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 PIPI)=(N(Q=D0 PIPI) - N(Q=DBAR0 PIPI))/(N(Q=D0 PIPI) + N(Q=DBAR0 PIPI)).


Charged particle productions at 90 degrees in the center-of-mass in very high energy proton proton collisions

Banner, M. ; Hamel, J.L. ; Pansart, J.P. ; et al.
Phys.Lett.B 41 (1972) 547-551, 1972.
Inspire Record 85071 DOI 10.17182/hepdata.28219

The transverse momentum distribution at 90° of pions, protons and antiprotons have been measured at the CERN intersecting storage rings for C.M. energies between 23.2 and 52.7 GeV. In this energy range, the pion and proton distributions are almost energy independent. The antiproton production rises by a factor of two between 23.2 and 52.7 GeV.

3 data tables

The invariant cross section was fitted by CONST*EXP(-SLOPE*PT).

The invariant cross section was fitted by CONST*EXP(-SLOPE(C=1)*PT+SLOPE(C=2)*PT**2).

No description provided.


Subthrehold K+ production in deuteron and alpha induced nuclear reactions.

Debowsky, M. ; Senger, P. ; Boivin, M. ; et al.
NUCL-EX-9709002, 1997.
Inspire Record 448262 DOI 10.17182/hepdata.31401

Double differential cross sections have been measured for pi+ and K+ emitted around midraidity in d+A and He+A collisions at a beam kinetic energy of 1.15 GeV/nucleon. The total pi+ yield increases by a factor of about 2 when using an alpha projectile instead of a deuteron whereas the K+ yield increases by a factor of about 4. According to transport calculations, the K+ enhancement depends both on the number of hadron-hadron collisions and on the energy available in those collisions: their center-of-mass energy increases with increasing number of projectile nucleons.

2 data tables

The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is PI+ kinectic energy in the nucleon-nucleon center of mass frame.

The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is K+ kinectic energy in the nucleon-nucleon center of mass frame.


Study of quasiexclusive neutral meson production in p N interactions at E(p) = 70-GeV in the deep fragmentation region.

The SPHINX collaboration Golovkin, S.V. ; Kozhevnikov, A.P. ; Kubarovsky, V.P. ; et al.
Z.Phys.A 359 (1997) 327-335, 1997.
Inspire Record 445405 DOI 10.17182/hepdata.40690

Quasiexclusive neutral meson production in pN-interactions is studied in experiments with the SPHINX facility operating in a proton beam from the IHEP accelerator (Ep=70 GeV). The cross sections and the parameters of the differential distributions for πo, ω, η and Ko production in the deep fragmentation region (xF > 0.79 ÷ 0.86) are presented. The results show that such proton quasiexclusive reactions with baryon exchange may be promising in searches for exotic mesons.

8 data tables

No description provided.

No description provided.

Data on the graph only.

More…

Normalized Small Y Cross-Sections for Neutrinos and anti-neutrinos at High-Energy

Barish, B.C. ; Bartlett, J.F. ; Bodek, A ; et al.
Phys.Rev.Lett. 39 (1977) 741, 1977.
Inspire Record 5717 DOI 10.17182/hepdata.50114

We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.

2 data tables

FE nucleus. The SIG/Enu is fitted to CONST(N=SIG)+CONST(N=T)*E.

FE nucleus. Averaged over the energies and beams.


Energy Dependence of the Pseudorapidity Distributions in Proton-Nucleus Collisions Between 50-GeV/c and 200-GeV/c.

Halliwell, C. ; Elias, J.E. ; Busza, W. ; et al.
Phys.Rev.Lett. 39 (1977) 1499-1502, 1977.
Inspire Record 123287 DOI 10.17182/hepdata.21004

Pseudorapidity distributions for proton-nucleus interactions are presented. The data cover twelve nuclei ranging from carbon to uranium and three incident proton momenta, 50, 100, and 200 GeV/c.

1 data table

Three-dimensional avegage multiplicity distribution is parametrized to CONST(C=F)+CONST(C=G)*COL+CONST(C=H)*COL, where COL = A(N=NUCLEUS)*SIG(Q=P P)/SIG(Q=P NUCLEUS).


Production of Multi - Pion Systems With Large Longitudinal Momentum at the {CERN} {ISR}

Lockman, William S. ; Meyer, T. ; Rander, J. ; et al.
Phys.Rev.Lett. 41 (1978) 680-683, 1978.
Inspire Record 6695 DOI 10.17182/hepdata.20814

Inclusive cross sections are presented for 2π and 3π systems with large longitudinal x at the highest intersecting storage ring energies (s=53 GeV for 2π; s=53 and 62 GeV for 3π). The ratio π+π−π−π− rises sharply with increasing x similar to the ratio K+K−, as expected in a quark-model interpretation.

2 data tables

The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).

The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).


Scaling properties of high mass symmetric hadron and pion pair production in proton - beryllium collisions

Jostlein, H. ; Engelmann, Roderich J. ; Fisk, R.J. ; et al.
Phys.Rev.Lett. 42 (1979) 146, 1979.
Inspire Record 132764 DOI 10.17182/hepdata.42603

We present measurements of the production symmetric high-mass hadron and pion pairs by protons of 200, 300, and 400 GeV, incident on a beryllium target. The two-particle invariant cross section for pion production can be described by the function E1E2d6σdp13dp23=(1.7×10−28)pt−8.4(1−xt)14 cm2/GeV4 (where pt is the mean pt of the two hadrons). Functions of the same form have been used in describing single-pion inclusive production. Equality of the exponents of pt in the two processes is observed, confirming the role of smearing contributions to single-hadron cross sections.

2 data tables

E*D3(SIG)/D3(P) is fitted by CONST*(1-XT)**POWER*PT**POWER.

E1*E2*D6(SIG)/D3(P1)/D3(P2) is fitted by CONST*(1-XT)**POWER*PT**POWER, where PT is (pt1 + pt2)/2.


MEASUREMENT OF P P ---> P X BETWEEN 50-GEV/C AND 400-GEV/C.

Abe, K. ; De Lillo, T. ; Robinson, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1527-1530, 1973.
Inspire Record 81796 DOI 10.17182/hepdata.50301

We present measurements of the invariant cross section for the inclusive reaction p+p→p+X in the region 0.14<|t|<0.38 GeV2, 100<s<750 GeV2, and 0.80<x<0.93.

1 data table

The cross sections are fitted by the formula CONST(C=A)*EXP(SLOPE*T)*(1+CO NST(C=B)/SQRT(S)).


Determination of Triple Regge Couplings from a Study of the Reaction p p -> p X between 50-GeV and 400-GeV

Abe, K. ; De Lillo, T. ; Robinson, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1530, 1973.
Inspire Record 82045 DOI 10.17182/hepdata.21356

We present an analysis, in the framework of the triple Regge model, of our recent experimental results on the reaction p+p→p+X between 50 and 400 GeV.

2 data tables

The cross sections is fitted in the framework of the triple Regge model. The symbols P and R in the (C=...) denote pomeron and reggeon, respectively. For fit I and II the authors used conventional trajectories alpha(P) = 1 +0.25*T, alpha(R) = 0.5 + T. Fit II is restricted to data with (1 - M(P=4)**2/S) > 0.84. In fit III they use alpha(R) = 0.2 + T for the RRP term. Fit IV is like fit I with additional fixed (pion pion P) term.

The cross sections is fitted in the farmework of the triple Regge model. The symbols P and R in teh (C=...) denote pomeron and reggeon, respectively. CONST(C=C) and SLOPE are from the replacement of the RRP term by the exponential one : CONST(C=C)*(SLOPE*(1-x)). See text for detail.


The Missing Mass Squared Dependence of the Average Charged Particle Multiplicity in the Reaction K+ p --> K0 X++ from 5-GeV/c-16-GeV/c

Chliapnikov, P.V. ; Gerdyukov, L.N. ; Minaev, N.G. ; et al.
Phys.Lett.B 52 (1974) 375-380, 1974.
Inspire Record 90218 DOI 10.17182/hepdata.50028

The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.

1 data table

Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.


Production of chi charmonium via 300-GeV/c pion and proton interactions on a lithium target

The E705 collaboration Antoniazzi, L. ; Arenton, M. ; Cao, Z. ; et al.
Phys.Rev.D 49 (1994) 543-546, 1994.
Inspire Record 354743 DOI 10.17182/hepdata.42541

We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.

3 data tables

The cross section per nucleon.

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).

The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.


MEASUREMENTS OF D (SIGMA) DE (T) IN COLLISIONS OF LIGHT NUCLEI AT S(NN)**(1/2) = 31.5-GEV

The AXIAL FIELD SPECTROMETER collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 231 (1989) 359-364, 1989.
Inspire Record 287781 DOI 10.17182/hepdata.29771

Calorimeter measurements of dσ de t for pp, dd, pα , and αα collisions at S nn =31.5 GeV are presented for the pseudorapidity interval | η cm | ⩽ 0.7, extending over eight decades to E t ⩾ 30 GeV. The data are compared with models that predict nuclear cross sections directly from pp data, under the assumption of independent nucleon scatters.

1 data table

The distributions are fitted D(SIG)/D(ET)=CONST*ET**POWER*EXP(-SLOPE*ET).


Measurement of the Single Jet Invariant Cross-section at {Fermilab}

The E609 collaboration Cormell, L.R. ; Arenton, M.W. ; Chen, H.F. ; et al.
Phys.Lett.B 150 (1985) 322-326, 1985.
Inspire Record 206286 DOI 10.17182/hepdata.30447

In an experiment performed at Fermilab we have studied the production of high p t hadron jets from 400 GeV/ c pp interactions. A large solid-angle, towered calorimeter was used to trigger and reconstruct the jet events. We report results for inclusive single-jet production and compare those results with QCD predictions and results obtained at the ISR and the SPS Collider.

1 data table

The invariant distribution is fitted to CONST*(1/PT**POWER)*(1-XT)**POWER.


Search for Anti-proton - Nucleus States With ($\bar{p}$, $p$) Reactions

Garreta, D. ; Birien, P. ; Bruge, G. ; et al.
Phys.Lett.B 150 (1985) 95-99, 1985.
Inspire Record 203156 DOI 10.17182/hepdata.49641

We have studied (p̄, p) reactions on 12 C , 63 Cu, and 209 Bi to search for possible nuclear states formed ny antiprotons and nuclei. The experiments used the 180 MeV antiproton beam from LEAR, and the high-resolution magnetic spectrometer, SPES II, to detect the outgoing protons. No evidence of antiproton-nucleus states was found. The gross features of the proton spectra are reasonably well described by intranuclear cascade model calculations, which consider proton emission following antiproton annihilations in the target nucleus.

1 data table

Parameters resulting from the best fits to the proton spectra with the expression D2(SIG)/D(OMEGA)/D(E) = CONST*SQRT(E)*EXP(-E/SLOPE).


Transverse momentum of J / psi produced in oxygen uranium collisions at 200-GeV per nucleon.

The NA38 collaboration Baglin, C. ; Baldisseri, A. ; Bussiere, A. ; et al.
Phys.Lett.B 251 (1990) 465-471, 1990.
Inspire Record 306053 DOI 10.17182/hepdata.29526

The study of the J ψ transverse momentum distribution in oxygen-uranium reactions at 200 GeV/nucleon shows that 〈 P T 〉 and 〈 P T 2 〉 increase with the transverse energy of the reaction. Muon pairs in the mass continuum do not exhibit the same behaviour. The comparison of the J ψ production rates in central and peripheral collisions shows a significant diminution for low P T central events.

4 data tables

Two parametrization of the D(SIG)/D(PT) are used: first is : PT*exp(-SLOPE*PT**CONST(C=PT)) and second is : PT*exp(-2*MT/CONST(C=MT)).

D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).

D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).

More…

Inclusive Cross-Sections for 180-Degree Production of High-Energy Protons, Deuterons, and Tritons in p-Nucleus Collisions at 600-MeV and 800-MeV

Frankel, S. ; Frati, W. ; Van Dyck, O. ; et al.
Phys.Rev.Lett. 36 (1976) 642, 1976.
Inspire Record 100888 DOI 10.17182/hepdata.21102

The inclusive cross sections, measured up to large values of effective mass (≡q22ν), are well fitted by dσd3p=Bxexp(−αxp22mx). Values of Bx and αx are given for Be, C, Cu, and Ta at the incident proton energy of 600 MeV and for Ag, Ta, and Pt at 800 MeV. Extremely large dp and tp ratios and large A and q2 dependences of the relative cross sections are observed.

2 data tables

D3(SIG)/D3(P) is fitted by the equation: CONST*exp(-SLOPE*P**2/(2*M)). CONST is presented per nucleon.

D3(SIG)/D3(P) is fitted by the equation: CONST*exp(-SLOPE*P**2/(2*M)). CONST is presented per nucleon.


Forward - backward charge asymmetry of electron pairs above the Z0 pole

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 2616-2621, 1996.
Inspire Record 417098 DOI 10.17182/hepdata.50121

We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.

1 data table

The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.


Two measurements of B0 anti-B0 mixing using kaon tagging

The ARGUS collaboration Albrecht, H. ; Hamacher, T. ; Hofmann, R.P. ; et al.
Phys.Lett.B 374 (1996) 256-264, 1996.
Inspire Record 403080 DOI 10.17182/hepdata.28387

Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have made two measurements of the mixing parameter χ d using kaons as flavour tags. Using D ∗+ K ± correlations we found χ d = 0.20 ± 0.13 ± 0.12 and from the study of (D ∗+ ℓ − ) K ± correlations we obtained χ d = 0.19 ± 0.07 ± 0.09. The branching ratio for B → D ∗+ X has been updated: Br( B → D ∗+ X) = (19.6 ± 1.9) %. We have also determined the average multiplicity of charged kaons in B 0 decays to be 0.78 ± 0.08.

2 data tables

Mixing parameter from counting kaon events. First (...,C=D*+K+-) and second(...,C=(D*+LEPTON-)K+-) value are obtained from a study of D*+K+- and (D*+LEPTO N-)K+- correlations respectively. Second value and the value, reported in Phys.Lett. 324B (1994) 249, were averaged, result third value (...,C=COMBINED) of the mixing parameter in the table (see text for details). In the second value (...,C=(D*+LEPTON-)K+-) the first systematic error is due to the background estimation, the branching ratio for the process B --> K+(K-) X, experimental cuts, and the second one is due to to the uncertainty on the branching ratio for the processes D0 --> K+- X.

No description provided.


Transverse momentum spectra of charged particles in p anti-p collisions at s**(1/2) = 630-GeV

Bocquet, G. ; Norton, A. ; Wang, H.Q. ; et al.
Phys.Lett.B 366 (1996) 434-440, 1996.
Inspire Record 403649 DOI 10.17182/hepdata.48062

We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN collider. We have studied the production of charged particles with transverse momenta ( p T ) up to 25 GeV/c. The results are in agreement with QCD predictions. The rise of 〈 p T 〉 with charged particle multiplicity may be related to changing production of low p T particles.

11 data tables

No description provided.

No description provided.

No description provided.

More…

A Study of particle ratios and strangeness suppression in p anti-p collisions at s**(1/2) = 630-GeV with UA1

Bocquet, G. ; Norton, A. ; Wang, H.Q. ; et al.
Phys.Lett.B 366 (1996) 447-450, 1996.
Inspire Record 403647 DOI 10.17182/hepdata.48043

From a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment and from other published data at the CERN S p p S collider we have estimated the relative production of π ± , π 0 , K ± , K S 0 , Λ, Λ , p and p . We obtain a meson over baryon ratio M B = 6.4 ± 1.1 . From the K S 0 π ± ratio we measure the strangeness suppression factor λ = 0.29 ± 0.02 ± 0.01 which, combining with other available data provides a new world average of 0.29 ± 0.015. Both the K S 0 π ± ratio and the strangeness suppression factor λ as a function of s are investigated, and an extrapolation to the LHC energy is performed.

2 data tables

Extrapolation to pt=0.

CONST is strangeness suppression factor, extracted from KS/PI+- ratio (see text).


Measurement of W - photon couplings with CDF in p - anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 74 (1995) 1936-1940, 1995.
Inspire Record 377331 DOI 10.17182/hepdata.42429

We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8<gW<3.1 for qWe=1 and −0.6<qWe<2.7 for gW=2 at 95% C.L.

1 data table

E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper).


Double boson production at D0.

The D0 collaboration Yasuda, T. ;
567-573, 1996.
Inspire Record 423583 DOI 10.17182/hepdata.43003

None

1 data table

E + MU combined. Limits on CP-conserving anomalous W_W_GAMMA couplings DELTA(K) and LAMBDA (see paper). The cross section times branching ratio are presented.


$W \gamma$ and $Z \gamma$ production at Tevatron

Aihara, H. ;
AIP Conf.Proc. 350 (1995) 72-83, 1995.
Inspire Record 395094 DOI 10.17182/hepdata.38096

We present results from CDF and D\O\ on $W\gamma$ and $Z\gamma$ productions in $p\bar{p}$ collisions at $\sqrt{s}=1.8{\rm TeV}.$ The goal of the analyses is to test the non-abelian self-couplings of the $W$, $Z$ and photon, one of the most direct consequences of the $SU(2)_L\otimes U(1)_Y$ gauge symmetry. We present direct measurements of $WW\gamma$ couplings and limits on $ZZ\gamma$ and $Z\gamma\gamma$ couplings, based on $p\bar{p}\rightarrow \ell\nu\gamma + X$ and $p\bar{p}\rightarrow \ell\ell\gamma+X$ events, respectively, observed during the 1992--1993 run of the Fermilab Tevatron Collider.

8 data tables

CDF data.. DELTA(R) = SQRT( DELTA(ETARAP(LEPTON,GAMMA))**2 + DELTA(PHI(LEPTON,GAMMA))**2 ) > 0.7.

CDF data.. DELTA(R) = SQRT( DELTA(ETARAP(LEPTON,GAMMA))**2 + DELTA(PHI(LEPTON,GAMMA))**2 ) > 0.7.

CDF data.. E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper). Limits on CP-violating parameters are within 3-6% of obtained.

More…