$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

12 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

More…

Measurements of top-quark pair to $Z$-boson cross-section ratios at $\sqrt s = 13, 8, 7$TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 02 (2017) 117, 2017.
Inspire Record 1502921 DOI 10.17182/hepdata.75536

Ratios of top-quark pair to $Z$-boson cross sections measured from proton--proton collisions at the LHC centre-of-mass energies of $\sqrt s=13$TeV, 8TeV, and 7TeV are presented by the ATLAS Collaboration. Single ratios, at a given $\sqrt s$ for the two processes and at different $\sqrt s$ for each process, as well as double ratios of the two processes at different $\sqrt s$, are evaluated. The ratios are constructed using previously published ATLAS measurements of the $t\overline{t}$ and $Z$-boson production cross sections, corrected to a common phase space where required, and a new analysis of $Z \rightarrow \ell^+ \ell^-$ where $\ell=e,\mu$ at $\sqrt s=13$TeV performed with data collected in 2015 with an integrated luminosity of $3.2$fb$^{-1}$. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the $Z\rightarrow e^+e^-$ and the $Z\rightarrow \mu^+ \mu^-$ channels for each $\sqrt s$ value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-$x$ values near 0.1 and the light-quark sea for $x<0.02$.

11 data tables

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state at 13TeV.

Breakdown of systematic uncertainties in percent for the measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

More…

Centrality dependence of $\mathbf{\psi}$(2S) suppression in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 06 (2016) 050, 2016.
Inspire Record 1426826 DOI 10.17182/hepdata.73306

The inclusive production of the $\psi$(2S) charmonium state was studied as a function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN LHC. The measurement was performed with the ALICE detector in the center of mass rapidity ranges $-4.46<y_{\rm cms}<-2.96$ and $2.03<y_{\rm cms}<3.53$, down to zero transverse momentum, by reconstructing the $\psi$(2S) decay to a muon pair. The $\psi$(2S) production cross section $\sigma_{\psi(\rm 2S)}$ is presented as a function of the collision centrality, which is estimated through the energy deposited in forward rapidity calorimeters. The relative strength of nuclear effects on the $\psi$(2S) and on the corresponding 1S charmonium state J/$\psi$ is then studied by means of the double ratio of cross sections $[\sigma_{\psi(\rm 2S)}/\sigma_{\rm J/\psi}]_{\rm pPb}/[\sigma_{\psi(\rm 2S)}/\sigma_{\rm J/\psi}]_{\rm pp}$ between p-Pb and pp collisions, and by the values of the nuclear modification factors for the two charmonium states. The results show a large suppression of $\psi$(2S) production relative to the J/$\psi$ at backward (negative) rapidity, corresponding to the flight direction of the Pb-nucleus, while at forward (positive) rapidity the suppressions of the two states are comparable. Finally, comparisons to results from lower energy experiments and to available theoretical models are presented.

7 data tables

Centrality-differential cross section dsigma_JPsi/dy in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third uncertainty is a systematic uncertainty fully correlated over centrality.

Centrality dependence of the Psi(2S)/J/Psi ratio in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third systematic uncertainty is fully correlated over centrality.

Centrality dependence of the (Psi(2S)/J/Psi)_pA/(Psi(2S)/J/Psi)_pp double ratio in the backward and forward rapidity range (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second one is a systematic one. The third systematic uncertainty is fully correlated over centrality, but uncorrelated versus rapidity, while the fourth uncertainty is fully correlated over centrality and over rapidity.

More…

Measurements of fiducial cross-sections for $t\bar{t}$ production with one or two additional $b$-jets in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 11, 2016.
Inspire Record 1390114 DOI 10.17182/hepdata.72856

Fiducial cross-sections for $t\bar{t}$ production with one or two additional $b$-jets are reported, using an integrated luminosity of 20.3 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for $t\bar{t}$ events with at least one additional $b$-jet is measured to be 950 $\pm$ 70 (stat.) $^{+240}_{-190}$ (syst.) fb in the lepton-plus-jets channel and 50 $\pm$ 10 (stat.) $^{+15}_{-10}$ (syst.) fb in the $e \mu$ channel. The cross-section times branching ratio for events with at least two additional $b$-jets is measured to be 19.3 $\pm$ 3.5 (stat.) $\pm$ 5.7 (syst.) fb in the dilepton channel ($e \mu$,\,$\mu\mu$, and \,$ee$) using a method based on tight selection criteria, and 13.5 $\pm$ 3.3 (stat.) $\pm$ 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 $\pm$ 0.33 (stat.) $\pm$ 0.28 (syst.)\% for the ratio of $t\bar{t}$ production with two additional $b$-jets to $t\bar{t}$ production with any two additional jets. All measurements are in good agreement with recent theory predictions.

8 data tables

Measured fiducial cross section for $t\bar{t}$ events with exactly one lepton and at least five jets, of which at least three are b-jets. The definition of the cross-section includes $t\bar{t}+Z / H$ events that pass the fiducial requirements.

Measured fiducial cross section for $t\bar{t}$ events with two leptons and at least three b-jets. The definition of the cross-section includes $t\bar{t}+Z / H$ events that pass the fiducial requirements.

Measured fiducial cross section for $t\bar{t}$ events with two leptons and at least four b-jets. The definition of the cross-section includes $t\bar{t}+Z / H$ events that pass the fiducial requirements.

More…

Search for metastable heavy charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 407, 2015.
Inspire Record 1376482 DOI 10.17182/hepdata.68640

Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.

80 data tables

Ratio of the reconstructed mass, computed as the most probable value of a fit to a Landau distribution convolved with a Gaussian, to the generated mass, as a function of the generated mass for stable gluino R-hadrons, along with the half-width at half maximum of the reconstructed mass distribution normalised to the generated mass.

Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable R-hadron mass.

Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.

More…

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Measurement of the ratio B(t to Wb)/B(t to Wq) in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 736 (2014) 33-57, 2014.
Inspire Record 1289223 DOI 10.17182/hepdata.64489

The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.

3 data tables

The measured TOP TOPBAR production cross section.

The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.

An indirect measurement of the top-quark total decay width.


Measurement of inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 112 (2014) 191802, 2014.
Inspire Record 1280200 DOI 10.17182/hepdata.62698

A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}$ = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 inverse-picobarns. The measured total inclusive cross sections times branching fractions are $\sigma(pp \to WX) \times B(W \to l\nu)$ = 12.21 +/- 0.03 (stat) +/- 0.24 (syst) +/- 0.32 (lum) nb, and $\sigma(pp \to ZX) \times B(Z \to l^{+}l^{-})$ = 1.15 +/- 0.01 (stat) +/- 0.02 (syst) +/- 0.03 (lum) nb, for the dilepton mass in the range of 60 to 120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at $\sqrt{s}$ = 8 TeV.

6 data tables

W+ total and fiducial production cross sections times branching fractions.

W- total and fiducial production cross sections times branching fractions.

(W+ + W-) total and fiducial production cross sections times branching fractions.

More…