Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

27 data tables

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 0-20%.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 20-40%.

More…

J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 054912, 2011.
Inspire Record 894560 DOI 10.17182/hepdata.100086

Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

6 data tables

J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Measurement of the $W+b$-jet and $W+c$-jet differential production cross sections in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 743 (2015) 6-14, 2015.
Inspire Record 1334689 DOI 10.17182/hepdata.73191

We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

3 data tables

The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.


Measurement of differential $J/\psi$ production cross-sections and forward-backward ratio in p+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 92 (2015) 034904, 2015.
Inspire Record 1373747 DOI 10.17182/hepdata.77275

Measurements of differential cross-sections for $J/\psi$ production in p+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV at the LHC with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb$^{-1}$. The $J/\psi$ mesons are reconstructed in the dimuon decay channel over the transverse momentum range $8<p_{\mathrm{T}}<30$ GeV and over the center-of-mass rapidity range $-2.87<y^{*}<1.94$. Prompt $J/\psi$ are separated from $J/\psi$ resulting from $b$-hadron decays through an analysis of the distance between the $J/\psi$ decay vertex and the event primary vertex. The differential cross-section for production of nonprompt $J/\psi$ is compared to a FONLL calculation that does not include nuclear effects. Forward-backward production ratios are presented and compared to theoretical predictions. These results constrain the kinematic dependence of nuclear modifications of charmonium and $b$-quark production in p+Pb collisions.

8 data tables

Measured non-prompt fraction.

Measured non-prompt fraction.

Measured prompt J/psi differential cross-section multiplied by branching ratio. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

More…

Angular analysis and differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 09 (2015) 179, 2015.
Inspire Record 1380188 DOI 10.17182/hepdata.73774

An angular analysis and a measurement of the differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-$ are presented, using data corresponding to an integrated luminosity of $3.0\, {\rm fb^{-1}}$ of $pp$ collisions recorded by the LHCb experiment at $\sqrt{s} = 7$ and $8\, {\rm TeV}$. Measurements are reported as a function of $q^{2}$, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range $1<q^2<6\, {\rm GeV}^{2}/c^{4}$, where precise theoretical calculations are available, the differential branching fraction is found to be more than $3\,\sigma$ below the Standard Model predictions.

3 data tables

The signal yields for $B_s^0 \to \phi\mu^+\mu^-$ decays, as well as the differential branching fraction relative to the normalisation mode and the absolute differential branching fraction, in bins of $q^2$. The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the branching fraction of the normalisation mode.

(Top) $CP$-averaged angular observables $F_{\rm L}$ and $S_{3,4,7}$ obtained from the unbinned maximum likelihood fit.

(Bottom) $CP$ asymmetries $A_{5,6,8,9}$ obtained from the unbinned maximum likelihood fit.


Search for a Higgs boson decaying into gamma* gamma to ll gamma with low dilepton mass in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 341-362, 2016.
Inspire Record 1382587 DOI 10.17182/hepdata.73712

A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 < m[ll gamma] < 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H to gamma* gamma to ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m[H] = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9 +2.8/-1.8) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H to J/Psi gamma for the 125 GeV Higgs boson is set at 1.5E-3.

4 data tables

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.

More…

First measurement of the differential branching fraction and $C\!P$ asymmetry of the $B^\pm\to\pi^\pm\mu^+\mu^-$ decay

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 10 (2015) 034, 2015.
Inspire Record 1391325 DOI 10.17182/hepdata.75486

The differential branching fraction with respect to the dimuon invariant mass squared, and the $C\!P$ asymmetry of the $B^\pm\to\pi^\pm\mu^+\mu^-$ decay are measured for the first time. The CKM matrix elements $|V_{td}|$ and $|V_{ts}|$, and the ratio $|V_{td}/V_{ts}|$ are determined. The analysis is performed using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The total branching fraction and $C\!P$ asymmetry of $B^\pm\to\pi^\pm\mu^+\mu^-$ decays are measured to be \begin{eqnarray} \mathcal{B}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& (1.83 \pm 0.24 \pm 0.05) \times 10^{-8}\,\,\,\mathrm{and} \nonumber\\ \mathcal{A}_{C\!P}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& -0.11 \pm 0.12 \pm 0.01\,, \nonumber \end{eqnarray} where the first uncertainties are statistical and the second are systematic. These are the most precise measurements of these observables to date, and they are compatible with the predictions of the Standard Model.

1 data table

The results for the differential branching fraction for $B^+ \rightarrow \pi^+\mu^+\mu^-$ in bins of $q^2$.


Forward production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt{s}=7$ and 8TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 11 (2015) 103, 2015.
Inspire Record 1392456 DOI 10.17182/hepdata.249

The production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt=7$ and $8\,\mathrm{TeV}$ is studied with the LHCb detector using data samples corresponding to an integrated luminosity of $1\,\mathrm{fb}^{-1}$ and $2\,\mathrm{fb}^{-1}$ respectively. The production cross-sections and ratios of cross-sections are measured as functions of the meson transverse momentum $p_T$ and rapidity $y$, for $p_T<30\,\mathrm{GeV}/c$} and $2.0<y<4.5$.

22 data tables

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)].

More…

Measurement of the forward-backward asymmetry in $Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ decays and determination of the effective weak mixing angle

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 11 (2015) 190, 2015.
Inspire Record 1394859 DOI 10.17182/hepdata.76490

The forward-backward charge asymmetry for the process $q\bar{q} \rightarrow Z/\gamma^{\ast} \rightarrow \mu^{+}\mu^{-}$ is measured as a function of the invariant mass of the dimuon system. Measurements are performed using proton proton collision data collected with the LHCb detector at $\sqrt{s} = 7$ and 8\tev, corresponding to integrated luminosities of $1$fb$^{-1}$ and $2$fb$^{-1}$ respectively. Within the Standard Model the results constrain the effective electroweak mixing angle to be $$sin^{2}\theta_{W}^{eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056 $$ where the first uncertainty is statistical, the second systematic and the third theoretical. This result is in agreement with the current world average, and is one of the most precise determinations at hadron colliders to date.

2 data tables

Values for $A_{\rm{FB}}$ with the statistical and positive and negative systematic uncertainties for $\sqrt{s}$ = 7 TeV data. The theoretical uncertainties presented in this table, corresponding to the PDF, scale and FSR uncertainties described in Sec. 5, affect only the predictions of $A_{\rm{FB}}$ and the sin$^2\theta^{\rm{eff}}_{\rm W}$ determination, and do not apply to the uncertainties on the measured $A_{\rm{FB}}$.

Values for $A_{\rm{FB}}$ with the statistical and positive and negative systematic uncertainties for $\sqrt{s}$ = 8 TeV data. The theoretical uncertainties presented in this table, corresponding to the PDF, scale and FSR uncertainties described in Sec. 5, affect only the predictions of $A_{\rm{FB}}$ and the sin$^2\theta^{\rm{eff}}_{\rm W}$ determination, and do not apply to the uncertainties on the measured $A_{\rm{FB}}$.


Production of associated $\Upsilon$ and open charm hadrons in $pp$ collisions at $\sqrt{s}=7$ and $8$TeV via double parton scattering

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 07 (2016) 052, 2016.
Inspire Record 1399056 DOI 10.17182/hepdata.73583

Associated production of bottomonia and open charm hadrons in $pp$ collisions at $\sqrt{s}=7$ and $8$TeV is observed using data corresponding to an integrated luminosity of 3$fb^{-1}$ accumulated with the LHCb detector. The observation of five combinations, $\Upsilon(1S)D^0$, $\Upsilon(2S)D^0$, $\Upsilon(1S)D^+$, $\Upsilon(2S)D^+$ and $\Upsilon(1S)D^+_{s}$, is reported. Production cross-sections are measured for $\Upsilon(1S)D^0$ and $\Upsilon(1S)D^+$ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. This allows a precise measurement of the effective cross-section for double parton scattering.

20 data tables

Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.

Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^+)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^+)<4.5$, $p_T(D^+)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.

Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(D^0)}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.

More…