Cross sections of common final states for K- p interactions at 8.25-GeV/c

The Athens-Democritus-Liverpool-Vienna collaboration Fry, J.R. ; Brankin, C. ; Matthews, R. ; et al.
Nucl.Phys.B 58 (1973) 408-419, 1973.
Inspire Record 83983 DOI 10.17182/hepdata.8005

Topological and channel cross sections are given for the more common final states produced in K − p interactions at 8.25 GeV/ c together with the single particle inclusive cross sections. We present cross sections for prominent resonances occurring in final states K N (nπ) and find the resonance fractions to be roughly independent of multiplicity.

3 data tables

SE FOLDED.

No description provided.

No description provided.


Measurement of the Neutrino - Nucleon Anti-neutrino - Nucleon Total Cross-sections

Eichten, T. ; Faissner, H. ; Hasert, F.J. ; et al.
Phys.Lett.B 46 (1973) 274-280, 1973.
Inspire Record 84484 DOI 10.17182/hepdata.28054

The v and v nucleon total cross-sections have been determined as a function of energy using a sample of 2500 v and 950 v event. The results are compared with predictions of scaling and charge symmetry hypotheses.

2 data tables

Measured charged current total cross section.

Measured charged current total cross section.


Further observation of muonless neutrino-induced inelastic interactions.

Aubert, Bernard ; Benvenuti, A.C. ; Cline, D. ; et al.
Phys.Rev.Lett. 32 (1974) 1454-1457, 1974.
Inspire Record 882 DOI 10.17182/hepdata.21934

We report here additional positive results of a search for muonless neutrino- and anti-neutrino-induced events using an enriched antineutrino beam and a muon identifier of relatively high geometric detection efficiency. The ratio of muonless to muon event rates is observed to be R=0.20±0.05. We observe no background derived from ordinary neutrino or antineutrino interactions that is capable of explaining the muonless signal.

1 data table

No description provided.


Observation of single pion production by a weak neutral current.

Barish, S.J. ; Cho, Y. ; Derrick, M. ; et al.
Phys.Rev.Lett. 33 (1974) 448, 1974.
Inspire Record 89586 DOI 10.17182/hepdata.51354

In exposures of the Argonne National Laboratory 12-ft bubble chamber filled with hydrogen and deuterium to a neutrino beam, we have observed events consisting of (1) a single π+ meson originating in the liquid, and (2) a proton with an e+e− pair pointing to it. Only a small fraction of these events can be ascribed to known reactions such as np→nnπ+ and np→npπ0. The remaining events, which correspond to a signal of about 4.5 standard deviations, we ascribe to the reactions νp→νnπ+ and νpπ0.

1 data table

No description provided.


Measurement of Rates for Muonless Deep Inelastic Neutrino and anti-neutrino Interactions

Aubert, Bernard ; Benvenuti, A.C. ; Cline, D. ; et al.
Phys.Rev.Lett. 32 (1974) 1457, 1974.
Inspire Record 1123 DOI 10.17182/hepdata.21890

Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.

1 data table

No description provided.


Measurement of e+ e- ---> e+ e- and e+ e- ---> mu+ mu- at SPEAR

Augustin, J.E. ; Boyarski, A. ; Breidenbach, Martin ; et al.
Phys.Rev.Lett. 34 (1975) 233, 1975.
Inspire Record 91755 DOI 10.17182/hepdata.21210

The reactions e+e−→e+e− and e+e−→μ+μ− have been measured at center-of-mass energies 3.0, 3.8, and 4.8 GeV and production angles of 50°<θ<130° over all azimuthal angles. Agreement with quantum electrodynamics is excellent. New limits for cutoff parameters in quantum-electrodynamic-breakdown models are given.

2 data tables

No description provided.

No description provided.


Dimuon Production by Neutrons

Knapp, B. ; Lee, Won-Yong ; Leung, P. ; et al.
Phys.Rev.Lett. 34 (1975) 1044, 1975.
Inspire Record 2108 DOI 10.17182/hepdata.21935

A very narrow resonance with a mass of 3.1 GeV/c2 is observed in the reaction n+Be→μ++μ−+X. The total cross section for this process, as well as its P⊥2 and x distribution, are given.

1 data table

The cross section per nucleon times the branching ratio.


Photoproduction of Narrow Resonances

Knapp, B. ; Lee, Won-Yong ; Leung, P. ; et al.
Phys.Rev.Lett. 34 (1975) 1040, 1975.
Inspire Record 2411 DOI 10.17182/hepdata.21280

A very narrow resonance with a mass of 3.105 GeV/c2 is observed in the reaction γ+Be→μ++μ−+X. The total cross section for this process, as well as its t distribution, is given.

1 data table

THIS IS CROSS SECTION PER BERYLLIUM NUCLEUS ASSUMING ONLY COHERENT OR QUASI-ELASTIC SCATTERING FROM A SINGLE NUCLEON. FORWARD DIFFERENTIAL CROSS SECTIONS QUOTED IN TABLE 1 OF T. NASH ET AL., PRL 36, 1233 (1976).


Version 2
Measurements of sigma(e+ e- --> mu+- mu-+) in the energy range 1.2-GeV to 3.0-GeV.

Alles-Borelli, V. ; Bernardini, M. ; Bollini, D. ; et al.
Phys.Lett.B 59 (1975) 201, 1975.
Inspire Record 99248 DOI 10.17182/hepdata.27778

The analysis of 1466 events of the type e + e − → μ ± μ ± , in the time-lifke range from 1.44 to 9.00 GeV 2 , sh that the absolute value of the cross-section and its energy dependence follow QED expectations within (± 3.2%) and (± 1.2%), respectively.

1 data table

The cross section of the reaction $e^+ e^- \to \mu^\pm \mu^\mp$ integrated over the experimental apparatus at 14 values of the colliding beam energy $E$ corresponding to total centre-of-mass energy $\sqrt{s}=2E$ from 1.2 to 3.0 GeV.


Evidence for anomalous lepton production in e+ e- annihilation.

Perl, Martin L. ; Abrams, G.S. ; Boyarski, A. ; et al.
Phys.Rev.Lett. 35 (1975) 1489-1492, 1975.
Inspire Record 100634 DOI 10.17182/hepdata.21164

We have found events of the form e++e−→e±+μ∓+missingenergy, in which no other charged particles or photons are detected. Most of these events are detected at or above a center-of-mass energy of 4 GeV. The missing-energy and missing-momentum spectra require that at least two additional particles be produced in each event. We have no conventional explanation for these events.

1 data table

X IN RE INCLUDES TWO OR MORE UNDETECTED PARTICLES.