A Precise Determination of the Electroweak Mixing Angle from Semileptonic Neutrino Scattering

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Z.Phys.C 36 (1987) 611, 1987.
Inspire Record 249672 DOI 10.17182/hepdata.15697

The cross-section ratio of neutral-current and charged-current semileptonic interactions of muon-neutrinos on isoscalar nuclei has been measured with the result:Rv=0.3093±0.0031 for hadronic energy larger than 4 GeV. From this ratio we determined the electroweak mixing angle sin2θW, wheremc is the charm-quark mass in GeV/c2. Comparison with direct measurements ofmw andmz determines the radiative shift of the intermediate boson mass Δr=0.077±0.025(exp.)±0.038(syst.), in agreement with the prediction. Assuming the validity of the electroweak standard theory we determined ϱ=0.990−0.013(mc−1.5)±0.009(exp.)±0.003(theor.).

3 data tables

No description provided.

No description provided.

STATISTICAL ERROR IN THE VALUE CITED IS REDUCING, WHEN CUT IS MORE STRINGENT?.


Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons

The CLAS collaboration Prok, Y. ; Bosted, P. ; Kvaltine, N. ; et al.
Phys.Rev.C 90 (2014) 025212, 2014.
Inspire Record 1292133 DOI 10.17182/hepdata.64411

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

4 data tables

Results for G1(P)/F1(P) for the proton in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(DEUT)/F1(DEUT) for the deuteron in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(P)/F1(P) for the proton in bins of (W;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

More…

Measurement of the proton spin structure function g1(x,Q**2) for Q**2 from 0.15-GeV**2 to 1.6-GeV**2 with CLAS.

The CLAS collaboration Fatemi, R. ; Skabelin, A.V. ; Burkert, V.D. ; et al.
Phys.Rev.Lett. 91 (2003) 222002, 2003.
Inspire Record 621221 DOI 10.17182/hepdata.41917

Double-polarization asymmetries for inclusive $ep$ scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH$_3$ target in the CLAS detector. The polarized structure function $g_1(x,Q^2)$ was extracted throughout the nucleon resonance region and into the deep inelastic regime, for $Q^2 = 0.15 -1.64 $GeV$^2$. The contributions to the first moment $\Gamma_1(Q^2) = \int g_1(x,Q^2)dx$ were determined up to $Q^2=1.2$ GeV$^2$. Using a parametrization for $g_1$ in the unmeasured low $x$ regions, the complete first moment was estimated over this $Q^2$ region. A rapid change in $\Gamma_1$ is observed for $Q^2 < 1 $GeV$^2$, with a sign change near $Q^2 = 0.3 $GeV$^2$, indicating dominant contributions from the resonance region. At $Q^2=1.2$ GeV$^2$ our data are below the pQCD evolved scaling value.

8 data tables

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.15 to 0.22 GeV**2 obtained with a beam energy of 2.6 GeV.

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.6 to 1.10 GeV**2 obtained with a beam energy of 4.3 GeV.

The polarized structure function G1 as a function of Bjorken X for the Q**2range 0.15 to 0.27 GeV.

More…

Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

306 data tables

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.

More…

Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

57 data tables

F2 measurements for a Q**2 of 0.175 GeV**2.

F2 measurements for a Q**2 of 0.225 GeV**2.

F2 measurements for a Q**2 of 0.275 GeV**2.

More…

Precision measurement of the proton spin structure function g1(p).

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 74 (1995) 346-350, 1995.
Inspire Record 375737 DOI 10.17182/hepdata.19665

We have measured the ratio g1pF1p over the range 0.029<x<0.8 and 1.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized ammonia. An evaluation of the integral ∫01g1p(x, Q2)dx at fixed Q2=3 (GeV/c)2 yields 0.127±0.004(stat)±0.010(syst), in agreement with previous experiments, but well below the Ellis-Jaffe sum rule prediction of 0.160±0.006. In the quark-parton model, this implies Δq=0.27±0.10.

2 data tables

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and using a fixed Q**2 of 3 GeV**2.


Precision measurement of the deuteron spin structure function g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 75 (1995) 25-28, 1995.
Inspire Record 393667 DOI 10.17182/hepdata.19611

We report on a high-statistics measurement of the deuteron spin structure function g1d at a beam energy of 29 GeV in the kinematic range 0.029<x<0.8 and 1<Q2<10 (GeV /c)2. The integral γ1d=∫1g1ddx evaluated at fixed Q2=3 (GeV /c)2 gives 0.042±0.003(stat)±0.004(syst). Combining this result with our earlier measurement of g1p, we find γ1p−γ1n=0.163±0.010(stat)±0.016(syst), which agrees with the prediction of the Bjorken sum rule with O(αs3) corrections, γ1p−γ1n=0.171±0.008. We find the quark contribution to the proton helicity to be Δq=0.30±0.06.

2 data tables

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and evaluated at Q**2 = 3 GeV**2.


Saturation of shadowing at very low x(Bj)

The E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 68 (1992) 3266-3269, 1992.
Inspire Record 333894 DOI 10.17182/hepdata.19864

The ratio of cross sections for inelastic muon scattering on xenon and deuterium nuclei was measured at very low Bjorken x (0.000 02<xBj<0.25). The data were taken at Fermilab experiment E-665 with a 490 GeV/c muon beam incident on liquid deuterium and gaseous xenon targets. Two largely independent analysis techniques gave statistically consistent results. The xenon-to-deterium per-nucleon cross-section ratio is constant at approximately 0.7 for xBj below 0.003.

2 data tables

Data using Electromagnetic Cuts.

Data using Hadron Requirement.


Nuclear decay following deep inelastic scattering of 470-GeV muons

The E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 74 (1995) 5198-5201, 1995.
Inspire Record 404381 DOI 10.17182/hepdata.19632

We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.

1 data table

The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.


Shadowing in deep inelastic muon scattering from nuclear targets

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Phys.Lett.B 211 (1988) 493-499, 1988.
Inspire Record 262246 DOI 10.17182/hepdata.29908

Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003–0.1) and low Q 2 (0.3–3.2 GeV 2 ) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q 2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.

4 data tables

VALUES OF Q**2 AT EACH POINT ARE:- 0.52,0.60,0.61,0.61,0.63,0.68,0.90.

VALUES OF Q**2 AT EACH POINT ARE:- 1.09,1.25,1.54,1.74,1.76,1.68,1.71, 2.29.

VALUES OF X AT EACH POINT ARE:- 0.009,0.011,0.010,0.010,0.010,0.011, 0.013,0.015.

More…