Search for top squark pair production in pp collisions at sqrt(s)=13 TeV using single lepton events

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2017) 019, 2017.
Inspire Record 1605128 DOI 10.17182/hepdata.79417

A search for top squark pair production in pp collisions at sqrt(s) = 13 TeV is performed using events with a single isolated electron or muon, jets, and a large transverse momentum imbalance. The results are based on data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. No significant excess of events is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models of pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Depending on the details of the model, we exclude top squarks with masses as high as 1120 GeV. Detailed information is also provided to facilitate theoretical interpretations in other scenarios of physics beyond the standard model.

10 data tables

Result of the background estimates and data yields corresponding to 35.9 $\text{fb}^\text{$-$1}$ for the 27 signal regions.

Result of the background estimates and data yields corresponding to 35.9 $\text{fb}^\text{$-$1}$ for the 4 signal regions dedicated to compressed spectra.

The observed exclusion limits at 95% CL assuming 100% branching fraction for direct top squark pair production with decay $\widetilde{t}\widetilde{t} \rightarrow t \widetilde{\chi_1^0} t \widetilde{\chi_1^0}$.

More…

Search for Supersymmetry in $pp$ Collisions at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ in the Single-Lepton Final State Using the Sum of Masses of Large-Radius Jets

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 151802, 2017.
Inspire Record 1599402 DOI 10.17182/hepdata.79414

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.

11 data tables

Figure 2. Cross section upper limit (95% CL) on T1tttt cross section

Figure 2. Excluded gluino and neutralino masses at 95% CL for the T1tttt.

Figure 2. +1 sigma excluded gluino and neutralino masses at 95% CL for the T1tttt.

More…

Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 012007, 2018.
Inspire Record 1633588 DOI 10.17182/hepdata.79808

A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance $p_\mathrm{T}^\text{miss}$ in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the $p_\mathrm{T}^\text{miss}$, the scalar sum of jet transverse momenta, and the $m_{\mathrm{T2}}$ mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.

20 data tables

Figure 8. The 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which |mStop−mLSP−mTop|≤ 25 GeV and mStop≤ 275 GeV because signal events are essentially indistinguishable from SM ttbar events in this region, rendering the signal event acceptance difficult to model.

Figure 8. Observed exclusion region at 95% CL assuming 100% branching fraction.

Figure 8. Expected exclusion region at 95% CL assuming 100% branching fraction.

More…

Search for top squark pair production in a final state with two tau leptons in proton-proton collisions at $ \sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2020) 015, 2020.
Inspire Record 1762677 DOI 10.17182/hepdata.90833

A search for pair production of the supersymmetric partner of the top quark, the top squark, in proton-proton collision events at $ \sqrt{s} =$ 13 TeV is presented in a final state containing hadronically decaying tau leptons and large missing transverse momentum. This final state is highly sensitive to high-$\tan{\beta}$ or higgsino-like scenarios in which decays of electroweak gauginos to tau leptons are dominant. The search uses a data set corresponding to an integrated luminosity of 77.2 fb$^{-1}$, which was recorded with the CMS detector during 2016 and 2017. No significant excess is observed with respect to the background prediction. Exclusion limits at 95% confidence level are presented in the top squark and lightest neutralino mass plane within the framework of simplified models, in which top squark masses up to 1100 GeV are excluded for a nearly massless neutralino.

29 data tables

Values of the predicted SM background events from various sources and observed events in each of the 15 signal regions.

Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.25 $).

Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.5 $).

More…

Combined search for supersymmetry with photons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 801 (2020) 135183, 2020.
Inspire Record 1742099 DOI 10.17182/hepdata.88922

A combination of four searches for new physics involving signatures with at least one photon and large missing transverse momentum, motivated by generalized models of gauge-mediated supersymmetry (SUSY) breaking, is presented. All searches make use of proton-proton collision data at $\sqrt{s}=$ 13 TeV, which were recorded with the CMS detector at the LHC in 2016, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Signatures with at least one photon and large missing transverse momentum are categorized into events with two isolated photons, events with a lepton and a photon, events with additional jets, and events with at least one high-energy photon. No excess of events is observed beyond expectations from standard model processes, and limits are set in the context of gauge-mediated SUSY. Compared to the individual searches, the combination extends the sensitivity to gauge-mediated SUSY in both electroweak and strong production scenarios by up to 100 GeV in neutralino and chargino masses, and yields the first CMS result combining various SUSY searches in events with photons at $\sqrt{s}=$ 13 TeV.

17 data tables

Neutralino Branching Fraction in GGM scenario

Neutralino Mass in GGM scenario

Data from Figure 3 of the paper

More…

Search for supersymmetry in events with a photon, jets, b-jets, and missing transverse momentum in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 444, 2019.
Inspire Record 1716137 DOI 10.17182/hepdata.88396

A search for supersymmetry is presented based on events with at least one photon, jets, and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 35.9 fb$^{-1}$ and were recorded at the LHC with the CMS detector in 2016. The analysis characterizes signal-like events by categorizing the data into various signal regions based on the number of jets, the number of b-tagged jets, and the missing transverse momentum. No significant excess of events is observed with respect to the expectations from standard model processes. Limits are placed on the gluino and top squark pair production cross sections using several simplified models of supersymmetric particle production with gauge-mediated supersymmetry breaking. Depending on the model and the mass of the next-to-lightest supersymmetric particle, the production of gluinos with masses as large as 2120 GeV and the production of top squarks with masses as large as 1230 GeV are excluded at 95% confidence level.

36 data tables

Values of the predicted SM background events from various sources and observed events in each of the 25 signal regions.

Observed $95\%$ CL upper limit on the production cross section of gluinos in T5qqqqHG model.

Expected $95\%$ CL upper limit on the production cross section of gluinos in T5qqqqHG model.

More…

Searches for physics beyond the standard model with the $M_\mathrm{T2}$ variable in hadronic final states with and without disappearing tracks in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 3, 2020.
Inspire Record 1753215 DOI 10.17182/hepdata.90834

Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $M_\mathrm{T2}$ for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving $R$-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.

52 data tables

Definitions of super signal regions, along with predictions, observed data, and the observed 95% CL upper limits on the number of signal events contributing to each region ($N_{95}^\mathrm{max}$). The limits are given under assumptions of 0% and 15% for the uncertainty on the signal acceptance. All selection criteria as in the full analysis are applied. For regions with $N_\mathrm{j}=1$, $H_\mathrm{T}\equiv p_\mathrm{T}^\mathrm{jet}$.

Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks ($\tilde{g}\to q\bar{q}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q\bar{q}\tilde{\chi}_1^0$.

Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either a $\tilde{\chi}_2^0$ that decays to $Z\tilde{\chi}_1^0$ (1/3 of the time), or a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$ (2/3 of the time). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j V\tilde{\chi}_1^0$.

More…

Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 752, 2020.
Inspire Record 1777617 DOI 10.17182/hepdata.90837

A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of 137 fb$^{-1}$ at a center-of-mass energy of 13 TeV, collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as 2.1 TeV for gluinos and 0.9 TeV for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.

16 data tables

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

More…

Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 052001, 2021.
Inspire Record 1849522 DOI 10.17182/hepdata.103065

A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.

54 data tables

Top quark tagging efficiencies are shown as a function of the generator-level top quark $p_T$ for the merged tagging algorithm and resolved tagging algorithm described in the paper. This plot shows the efficiencies as calculated in a sample of simulated $t\bar{t}$ events in which one top quark decays leptonically, while the other decays hadronically. In addition to the individual algorithms shown as orange squares (boosted top quarks) and green inverted triangles (resolved top quarks), the total top quark tagging efficiency (blue dots) is also shown.

W boson tagging efficiencies are shown as a function of the generator-level W boson $p_T$ for the merged tagging algorithm described in the paper. This plot shows the W boson tagging efficiency when calculated in a sample of simulated WW events.

Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $p_T^{miss}$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.

More…

Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 04 (2022) 091, 2022.
Inspire Record 1966342 DOI 10.17182/hepdata.114415

A search for supersymmetry in events with two or three low-momentum leptons and missing transverse momentum is performed. The search uses proton-proton collisions at $\sqrt{s} =$ 13 TeV collected in the three-year period 2016-2018 by the CMS experiment at the LHC and corresponding to an integrated luminosity of up to 137 fb$^{-1}$. The data are found to be in agreement with expectations from standard model processes. The results are interpreted in terms of electroweakino and top squark pair production with a small mass difference between the produced supersymmetric particles and the lightest neutralino. For the electroweakino interpretation, two simplified models are used, a wino-bino model and a higgsino model. Exclusion limits at 95% confidence level are set on $\widetilde{\chi}^0_2 / \widetilde{\chi}^\pm_1$ masses up to 275 GeV for a mass difference of 10 GeV in the wino-bino case, and up to 205 (150) GeV for a mass difference of 7.5 (3) GeV in the higgsino case. The results for the higgsino are further interpreted using a phenomenological minimal supersymmetric standard model, excluding the higgsino mass parameter $\mu$ up to 180 GeV with the bino mass parameter $M_1$ at 800 GeV. In the top squark interpretation, exclusion limits are set at top squark masses up to 540 GeV for four-body top squark decays and up to 480 GeV for chargino-mediated decays with a mass difference of 30 GeV.

23 data tables

The post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin for the DY CR. Uncertainties include both the statistical and systematic components.

The post-fit distribution of the $M(\ell\ell)$ variable is shown for the high-MET bin for the DY CR. Uncertainties include both the statistical and systematic components.

The post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin for the $\text{t}\bar{\text{t}}$ CR. Uncertainties include both the statistical and systematic components.

More…