$Z$ boson production in $p+$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 92 (2015) 044915, 2015.
Inspire Record 1384272 DOI 10.17182/hepdata.69247

The ATLAS Collaboration has measured the inclusive production of $Z$ bosons via their decays into electron and muon pairs in $p+$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV at the Large Hadron Collider. The measurements are made using data corresponding to integrated luminosities of 29.4 nb$^{-1}$ and 28.1 nb$^{-1}$ for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$, respectively. The results from the two channels are consistent and combined to obtain a cross section times the $Z \rightarrow \ell\ell$ branching ratio, integrated over the rapidity region $|y^{*}_{Z}|<3.5$, of 139.8 $\pm$ 4.8 (stat.) $\pm$ 6.2 (syst.) $\pm$ 3.8 (lumi.) nb. Differential cross sections are presented as functions of the $Z$ boson rapidity and transverse momentum, and compared with models based on parton distributions both with and without nuclear corrections. The centrality dependence of $Z$ boson production in $p+$Pb collisions is measured and analyzed within the framework of a standard Glauber model and the model's extension for fluctuations of the underlying nucleon-nucleon scattering cross section.

7 data tables

The centrality bias factors derived from data as explained in the text. Model calculations shown in the Figure are found in arXiv:1412.0976.

The differential $Z$ boson production cross section, $d\sigma/dy^\mathrm{*}_{Z}$, as a function of $Z$ boson rapidity in the center-of-mass frame $y^\mathrm{*}_{Z}$, for $Z\rightarrow ee$, $Z\rightarrow\mu\mu$, and their combination $Z\rightarrow\ell\ell$.

The differential cross section of $Z$ boson production multiplied by the Bjorken $x$ of the parton in the lead nucleus, $x_{Pb} d\sigma /dx_{Pb}$, as a function of $x_{Pb}$.

More…

Study of W boson production in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 750 (2015) 565-586, 2015.
Inspire Record 1353541 DOI 10.17182/hepdata.69232

The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 inverse nanobarns at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 5.02 TeV, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward-backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV, and as a function of the lepton pseudorapidity in the abs(eta[lab]) < 2.4 range. Deviations from the expectations based on currently available parton distribution functions are observed, showing the need for including W boson data in nuclear parton distribution global fits.

6 data tables

Lepton charge asymmetry, $(N_{\ell}^+ - N_{\ell}^-)/(N_{\ell}^+ + N_{\ell}^-)$ as a function of the lepton pseudorapidity.

Production cross section for $\textrm{pPb} \to W^+ + X \to \ell \nu + X$ for positively (top) and negatively (bottom) charged leptons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the lepton pseudorapidity. Values are given first for muons and electrons separately, then combined. The global normalization uncertainty of 3.5\% is not included in the listed uncertainties.

Production cross section for $\textrm{pPb} \to W^- + X \to \ell \nu + X$ for positively (top) and negatively (bottom) charged leptons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the lepton pseudorapidity. Values are given first for muons and electrons separately, then combined. The global normalization uncertainty of 3.5\% is not included in the listed uncertainties.

More…

Feynman-x and transverse momentum dependence of D meson production in 250-GeV pi, K and p nucleon interactions.

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 77 (1996) 2392-2395, 1996.
Inspire Record 418093 DOI 10.17182/hepdata.42291

We measure the differential cross sections with respect to Feynman x ( xF) and transverse momentum ( pT) for π, K, and p-induced charm meson production using fully reconstructed D+, D0, and Ds decays. The shapes of these cross sections are compared to the theoretical predictions for charm quark production of next-to-leading order perturbative QCD using modern parametrizations of the pion and nucleon parton distributions. We observe the differences expected in production induced by projectiles with different gluon distributions, harder distributions being indicated for mesons than for protons.

5 data tables

Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.

Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.

Result of fitting DSIG/dXL spectra with form (1-XL)**POWER.

More…

D*+- production in 250-GeV pi+- N interactions

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.D 49 (1994) R4317-R4320, 1994.
Inspire Record 354345 DOI 10.17182/hepdata.42544

We report results from Fermilab experiment E769 on the differential cross sections of D*± charm vector mesons with respect to Feynman-x (xF) and transverse momentum (PT), and on the atomic mass dependence of the production. The D* mesons were produced by a 250 GeV π beam on a target of Be, Al, Cu, and W foils. The dσdxF distribution is fit by the form ((1−xF)n) with n=3.5±0.3±0.1, the dσdPT2 distribution by exp(−b×PT2) with b=0.70±0.07±0.04 GeV−2, and the cross section A dependence by Aα with α=1.00±0.07±0.02. These results are compared to the equivalent parameters for the production of pseudoscalar D0 and D± charm mesons.

5 data tables

Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 D0 modes KPI, K3PI and KPIPI0.

Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 modes KPI, K3PI and KPIPI0.

Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.6.

More…

Feynman-x and Transverse Momentum Dependence on $D^{\pm}$ and $D^0$, $\bar{D}^0$ Production in 250 GeV $\pi^-$ Nucleon Interactions

The Fermilab E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 69 (1992) 3147-3150, 1992.
Inspire Record 338063 DOI 10.17182/hepdata.19804

We measure the differential cross section with respect to Feynman-x (xF) and transverse momentum (PT) for charm meson production using targets of Be, Al, Cu, and W. In the range 0.1<xF<0.7, dσ/dxF is well fit by the form (1-xF)n with n=3.9±0.3. The difference between n values for D− and D+ is 1.1±0.7. However, we find an asymmetry of 0.18±0.06 favoring the production of D− compared to D+. In the lower PT range, <2 GeV, dσ/dPT2 is well fit by the form exp(-b×PT2) with b=1.03±0.06 GeV−2, while in the higher PT range, 0.8 to 3.6 GeV, it is well fit by the form exp(-b’×PT) with b’=2.76±0.08 GeV−1. The shape of the differential cross section has no significant dependence on atomic mass of the target material.

4 data tables

No description provided.

Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.7. Statistical errors only. Systematic errors are small in comparison.

Results of fit to DSIG/DPT**2 distribution of the form exp(-POWER*PT**2) in the PT**2 range 0.0 to 4.0 GeV**2.

More…