$ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032005, 2018.
Inspire Record 1625109 DOI 10.17182/hepdata.82224

Measurements of $ZZ$ production in the $\ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 $\mathrm{fb}^{-1}$ of collisions collected by the ATLAS experiment in 2015 and 2016. Here $\ell$ and $\ell'$ stand for electrons or muons. Integrated and differential $ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross sections with $Z \to \ell^+\ell^-$ candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all Standard-Model decays of $Z$ bosons with mass between 66 GeV and 116 GeV, resulting in a value of $17.3 \pm 0.9$ [$\pm 0.6$ (stat.) $\pm 0.5$ (syst.) $\pm 0.6$ (lumi.)] pb. The measurements are found to be in good agreement with the Standard-Model predictions. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading $Z$-boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

1 data table match query

Observed data events as function of the transverse momentum of the 1. lepton.


$\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2021-200, 2021.
Inspire Record 1946970 DOI 10.17182/hepdata.136309

The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonances has been measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval $-$0.5 $<$$y$$<$ 0 and the transverse momentum spectra are measured for various multiplicity classes up to $p_{\rm T}$ = 20 GeV/$c$ for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $p_{\rm T}$ = 16 GeV/$c$ for $\mathrm{\phi(1020)}$. The $p_{\rm T}$ -integrated yields and mean transverse momenta are reported and compared with previous results in pp, p-Pb and Pb-Pb collisions. The $x_{\mathrm{T}}$ scaling for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonance production is newly tested in p-Pb collisions and found to hold in the high-$p_{\rm T}$ region at LHC energies. The nuclear modification factors ($R_{\rm pPb}$) as a function of $p_{\rm T}$ for $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ at $\sqrt{s_{NN}}$ = 8.16 TeV are presented along with the new $R_{\rm pPb}$ measurements of $\mathrm{K}^{*0}$, $\mathrm{\phi}$ , $\Xi$, and $\Omega$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. At intermediate $p_{\rm T}$ (2-8 GeV/$c$), $R_{\rm pPb}$ of $\Xi$, $\Omega$ show a Cronin-like enhancement, while $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ show no or little nuclear modification. At high $p_{\rm T}$ ($>$ 8 GeV/$c$), the $R_{\rm pPb}$ values of all hadrons are consistent with unity within uncertainties. The $R_{\rm pPb}$ of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ at $\sqrt{s_{\rm NN}}$ = 8.16 and 5.02 TeV show no significant energy dependence.

1 data table match query

$p_{\mathrm T}$-differential $R_{\mathrm{pPb}}$ of $\Omega$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$5.02 TeV.


A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Nature 607 (2022) 52-59, 2022.
Inspire Record 2104706 DOI 10.17182/hepdata.130266

The Standard Model of particle physics describes the known fundamental particles and forces that make up our universe, with the exception of gravity. One of the central features of the Standard Model is a field that permeates all of space and interacts with fundamental particles. The quantum excitation of this field, known as Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the Standard Model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, allowing much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and $W$ and $Z$ bosons -- the carriers of the strong, electromagnetic, and weak forces -- are studied in detail. Interactions with three third-generation matter particles (bottom ($b$) and top ($t$) quarks, and tau leptons ($\tau$)) are well measured and indications of interactions with a second-generation particle (muons, $\mu$) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the Standard Model.

1 data table match query

Best-fit values and uncertainties for the cross sections in each measurement region, normalized to the SM predictions for the various parameters. The measurements assume SM branching fractions for all measured decays. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical uncertainties in the measurements, respectively. The gray bands show the theory uncertainties on the predictions. The level of compatibility between the combined measurement and the SM prediction corresponds to a $p$-value of 94%.


Version 2
A measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

2 data tables match query

Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.


A statistical combination of ATLAS Run 2 searches for charginos and neutralinos at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2024-018, 2024.
Inspire Record 2758009 DOI 10.17182/hepdata.149530

Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.

1 data table match query

Observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.


ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 510, 2015.
Inspire Record 1380183 DOI 10.17182/hepdata.69366

This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb$^{-1}$ of collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV, although in some case an additional 4.7 fb$^{-1}$ of collision data at $\sqrt{s}$ = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.

1 data table match query

Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=350 GeV and m(chi1)=20 GeV (top plot). This table is for the t1L/t0L expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d14 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d15.


Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 793 (2019) 420-432, 2019.
Inspire Record 1672944 DOI 10.17182/hepdata.89396

Charged-particle spectra at midrapidity are measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV and presented in centrality classes ranging from most central (0-5%) to most peripheral (95-100%) collisions. Possible medium effects are quantified using the nuclear modification factor ($R_{\rm AA}$) by comparing the measured spectra with those from proton-proton collisions, scaled by the number of independent nucleon-nucleon collisions obtained from a Glauber model. At large transverse momenta ($8<p_{\rm T}<20$ GeV/$c$), the average $R_{\rm AA}$ is found to increase from about $0.15$ in 0-5% central to a maximum value of about $0.8$ in 75-85% peripheral collisions, beyond which it falls off strongly to below $0.2$ for the most peripheral collisions. Furthermore, $R_{\rm AA}$ initially exhibits a positive slope as a function of $p_{\rm T}$ in the $8$-$20$ GeV/$c$ interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties related to event selection and normalization, we also provide the ratio of $R_{\rm AA}$ in adjacent centrality intervals. Our results in peripheral collisions are consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. This explains the unintuitive observation that $R_{\rm AA}$ is below unity in peripheral Pb-Pb, but equal to unity in minimum-bias p-Pb collisions despite similar charged-particle multiplicities.

1 data table match query

Slope of a linear fit to RAA for 8 < pT < 20 GeV/c versus centrality percentile


Anisotropic flow and flow fluctuations of identified hadrons in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 243, 2023.
Inspire Record 2093750 DOI 10.17182/hepdata.133152

The first measurements of elliptic flow of $\pi^\pm$, ${\rm K}^\pm$, p+$\overline{\rm p}$, ${\rm K_{S}^0}$, $\Lambda$+$\overline{\Lambda}$, $\phi$, $\Xi^-$+$\Xi^+$, and $\Omega^-$+$\Omega^+$ using multiparticle cumulants in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented. Results obtained with two- ($v_2\{2\}$) and four-particle cumulants ($v_2\{4\}$) are shown as a function of transverse momentum, $p_{\rm T}$, for various collision centrality intervals. Combining the data for both $v_2\{2\}$ and $v_2\{4\}$ also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark-gluon plasma. The characteristic features observed in previous $p_{\rm T}$-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low $p_{\rm T}$ and the approximate scaling with the number of constituent quarks at intermediate $p_{\rm T}$, are similarly present in the four-particle correlations and the combinations of $v_2\{2\}$ and $v_2\{4\}$. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide $p_{\rm T}$ range.

1 data table match query

The $p_{T}$-differential $v_2$ measured with two-particle correlations with a pseudorapidity gap of $|\Delta \eta| > 0.8$ for different particle species and centralities in Pb--Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV.


Anisotropic flow of identified hadrons in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2021) 152, 2021.
Inspire Record 1889989 DOI 10.17182/hepdata.114014

Measurements of elliptic ($v_2$) and triangular ($v_3$) flow coefficients of $\pi^{\pm}$, K$^{\pm}$, p+$\rm \overline{p}$, K$^0_{\rm S}$, and $\Lambda + \overline{\Lambda}$ obtained with the scalar product method in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The results are obtained in the rapidity range $\left | y \right |<0.5$ and reported as a function of transverse momentum, $p_{\rm T}$, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for $p_{\rm T}<3$ GeV/$c$, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3< $p_{\rm T}$ <8 GeV/$c$). The magnitude of the baryon $v_{2}$ is larger than that of mesons up to $p_{\rm T}$ = 6 GeV/$c$. The centrality dependence of the shape evolution of the $p_{\rm T}$-differential $v_2$ is studied for the various hadron species. The $v_2$ coefficients of $\pi^{\pm}$, K$^{\pm}$, and p+$\rm \overline{p}$ are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for $p_{\rm T} <1$ GeV/$c$. A comparison with $v_{\rm n}$ measurements in the corresponding centrality intervals in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV yields an enhanced $v_2$ in central collisions and diminished value in semicentral collisions.

1 data table match query

$v_2\{2, |\Delta\eta| > 2.0\}$ of ${\rm K}^{0}_{\rm{S}}$ as a function of $p_{\rm T}$ for the 0-5% centrality interval.


Anisotropic flow of identified particles in Pb-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}=5.02$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 09 (2018) 006, 2018.
Inspire Record 1672822 DOI 10.17182/hepdata.84717

The elliptic ($v_2$), triangular ($v_3$), and quadrangular ($v_4$) flow coefficients of $\pi^{\pm}$, ${\rm K}^{\pm}$, ${\rm p+\overline{p}}$, ${\Lambda+\overline{\Lambda}}$, ${\rm K}^{\rm 0}_{\rm S}$, and the $\phi$-meson are measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Results obtained with the scalar product method are reported for the rapidity range $\vert y \vert <$ 0.5 as a function of transverse momentum, $p_\text{T}$, at different collision centrality intervals between 0-70%, including ultra-central (0-1%) collisions for $\pi^{\pm}$, ${\rm K}^{\pm}$, and ${\rm p+\overline{p}}$. For $p_\text{T} < 3$ GeV$\kern-0.05em/\kern-0.02em c$, the flow coefficients exhibit a particle mass dependence. At intermediate transverse momenta ($3<p_\text{T}<$~8-10 GeV$\kern-0.05em/\kern-0.02em c$), particles show an approximate grouping according to their type (i.e., mesons and baryons). The $\phi$-meson $v_2$, which tests both particle mass dependence and type scaling, follows ${\rm p+\overline{p}}$ $v_2$ at low $p_\text{T}$ and $\pi^{\pm}$ $v_2$ at intermediate $p_\text{T}$. The evolution of the shape of $v_{\rm n}(p_{\mathrm{T}})$ as a function of centrality and harmonic number $n$ is studied for the various particle species. Flow coefficients of $\pi^{\pm}$, ${\rm K}^{\pm}$, and ${\rm p+\overline{p}}$ for $p_\text{T}<3$ GeV$\kern-0.05em/\kern-0.02em c$ are compared to iEBE-VISHNU and MUSIC hydrodynamical calculations coupled to a hadronic cascade model (UrQMD). The iEBE-VISHNU calculations describe the results fairly well for $p_\text{T} < 2.5$ GeV$\kern-0.05em/\kern-0.02em c$, while MUSIC calculations reproduce the measurements for $p_\text{T} < 1$ GeV$\kern-0.05em/\kern-0.02em c$. A comparison to $v_{\rm n}$ coefficients measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is also provided.

1 data table match query

anisotropic flow as a function of transverse momentum for Pb-Pb collisions at sqNN = 5.02 TeV.


Azimuthal correlations of prompt D mesons with charged particles in pp and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 979, 2020.
Inspire Record 1762354 DOI 10.17182/hepdata.95121

The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $\sqrt{s}$ = 5.02 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC is reported. The D$^{\rm 0}$, D$^{\rm +}$, and D$^{\rm *+}$ mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval 3 < $p_{\rm T}$ < 24 GeV/c and correlated with charged particles having $p_{\rm T}$ > 0.3 GeV/c and pseudorapidity $|\eta| <$ 0.8. The properties of the correlation peaks appearing in the near- and away-side regions (for $\Delta \varphi \approx$ 0 and $\Delta \varphi \approx \pi$, respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p-Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators.

1 data table match query

Comparison of the near-side associated peak width measured in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, for correlations of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) and charged particles, as a function of the D-meson $p_{\rm T}$, for associated particle $0.3 < p_{\rm T} < 1.0$. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$.


Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{_{\rm NN}}}}$ = 2.76 TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 785 (2018) 320-331, 2018.
Inspire Record 1664538 DOI 10.17182/hepdata.91129

Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum $k_{\rm T}$ for different collision centralities in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. We find that the $R_{\rm side}$ and $R_{\rm out}$ radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate in phase relative to the third harmonic event plane, similar to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed-out at freeze out.

1 data table match query

Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.


Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 748 (2015) 392-413, 2015.
Inspire Record 1334140 DOI 10.17182/hepdata.67349

Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.

1 data table match query

Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).


Centrality dependence of J/$\psi$ and $\psi$(2S) production and nuclear modification in p-Pb collisions at $\sqrt{s_{\rm NN}} =$ 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 02 (2021) 002, 2021.
Inspire Record 1811102 DOI 10.17182/hepdata.100166

The inclusive production of the J/$\psi$ and $\psi$(2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 8.16$ TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals $-4.46 < y_{\rm cms} < -2.96$ (Pb-going direction) and $2.03 < y_{\rm cms} < 3.53$ (p-going direction), down to zero transverse momentum ($p_{\rm T}$). The J/$\psi$ and $\psi$(2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The $p_{\rm T}$-differential J/$\psi$ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average $\langle p_{\rm T} \rangle$ and $\langle p^{2}_{\rm T} \rangle$ values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states is observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/$\psi$ increases from below unity in peripheral collisions to above unity in central collisions, while for the $\psi$(2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects.

1 data table match query

The values of $\langle p_{\rm T} \rangle$ and $\langle p^{2}_{\rm T} \rangle$ of inclusive J/$\psi$ at backward ($-4.46 < y < -2.96$) and forward ($2.03 < y < 3.53$) rapidity calculated from extrapolated cross sections in pp collisions. The uncertainty is the systematic uncertainty. The systematic uncertainty is obtained as the quadratic sum of the uncorrelated and correlated systematic uncertainties. This table refers Fig. 4 of ALICE-PUBLIC-2020-007.


Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

1 data table match query

Charged-hadron spectrum in the centrality interval 10-20% for Xe+Xe, divided by &#9001;TAA&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.


Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

1 data table match query

Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.


Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

1 data table match query

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for INEL collisions at a centre-of-mass energy of 7000 GeV.


Charged-particle production as a function of the relative transverse activity classifier in pp, p$-$Pb, and Pb$-$Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 01 (2024) 199, 2024.
Inspire Record 2709103 DOI 10.17182/hepdata.146104

Measurements of charged-particle production in pp, p$-$Pb, and Pb$-$Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum ($p_{\mathrm{T}}^{\rm trig}$) in the range $8<p_{\mathrm{T}}^{\rm trig}<15$ GeV$/c$. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, $R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$, is used to group events according to their UE activity, where $N_{\mathrm{ch}}^{\mathrm{T}}$ is the charged-particle multiplicity per event in the transverse region and $\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$ is the mean value over the whole analysed sample. The energy dependence of the $R_{\mathrm{T}}$ distributions in pp collisions at $\sqrt{s}=2.76$, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle $p_{\rm T}$ spectra as a function of $R_{\mathrm{T}}$ in the three azimuthal regions in pp, p$-$Pb, and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p$-$Pb).

1 data table match query

Average $p_\mathrm{T}$ as a function of $R_\mathrm{T}$ in the transverse region using events with trigger particles $8<p_\mathrm{T}^\mathrm{trig}<15~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ for Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{TeV}$


Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 79 (2019) 307, 2019.
Inspire Record 1706753 DOI 10.17182/hepdata.89268

The pseudorapidity density of charged particles, $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$, in p-Pb collisions has been measured at a centre-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, $|\eta|<1.8$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ value is $19.1\pm0.7$ at $|\eta|<0.5$. This quantity divided by $\langle N_\rm{part} \rangle/2$, is $4.73\pm0.20$, which is 9.5% higher than the corresponding value for p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ distribution. Saturation-based models reproduce the distributions well for $\eta>-1.3$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p-Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.

1 data table match query

Pseudorapidity density of charged particles in p–Pb NSD collisions at 8.16 TeV for 60-80% centrality class and ZNA estimator.


Combination of the searches for pair-produced vector-like partners of the third-generation quarks at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 211801, 2018.
Inspire Record 1685421 DOI 10.17182/hepdata.83541

A combination of the searches for pair-produced vector-like partners of the top and bottom quarks in various decay channels ($T$$\rightarrow$$Zt/Wb/Ht$, $B$$\rightarrow$$Zb/Wt/Hb$) is performed using 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The observed data are found to be in good agreement with the Standard Model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross-section for a range of vector-like quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vector-like quarks decay to Standard Model particles. A singlet $T$ is excluded for masses below 1.31 TeV and a singlet $B$ is excluded for masses below 1.22 TeV. Assuming a weak isospin $(T,B)$ doublet and $|V_{Tb}| \ll |V_{tB}|$, $T$ and $B$ masses below 1.37 TeV are excluded.

1 data table match query

Expected and observed 95% upper limits on the vector-like bottom quark pair-production signal strength (i.e. the ratio sigma_exclusion/sigma_VLQ) as a function of the branching ratio for a vector-like quark mass of 1400 GeV, asumming that the vector-like quarks exclusively decay to SM particles (and third generation quarks). If interpreting these results in models with decays to non-Standard-Model particles, one must check that the additional decays will not end up in any control regions of the relevant analyses.


Version 2
Comprehensive measurements of $t$-channel single top-quark production cross sections at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112006, 2014.
Inspire Record 1303905 DOI 10.17182/hepdata.64385

This article presents measurements of the $t$-channel single top-quark ($t$) and top-antiquark ($\bar{t}$) total production cross sections $\sigma(tq)$ and $\sigma(\bar{t}q)$, their ratio $R_{t}=\sigma(tq)/\sigma(\bar{t}q)$, and a measurement of the inclusive production cross section $\sigma(tq + \bar{t}q)$ in proton--proton collisions at $\sqrt{s} = 7$ TeV at the LHC. Differential cross sections for the $tq$ and $\bar{t}q$ processes are measured as a function of the transverse momentum and the absolute value of the rapidity of $t$ and $\bar{t}$, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb$^{-1}$. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are $\sigma(tq)= 46\pm 6\; \mathrm{pb}$, $\sigma(\bar{t}q)= 23 \pm 4\; \mathrm{pb}$, $R_{t}=2.04\pm 0.18$, and $\sigma(tq + \bar{t}q)= 68 \pm 8\; \mathrm{pb}$, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on $R_{t}$ is mainly statistical. Using the ratio of $\sigma(tq + \bar{t}q)$ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation $|V_{tb}|\gg |V_{ts}|, |V_{td}|$, we determine $|V_{tb}|=1.02 \pm 0.07$.

1 data table match query

Detailed list of the contribution of each source of uncertainty to the total relative uncertainty on the measured $\dfrac{\mathrm{d}\sigma}{\mathrm{d}|y(t)|}$ distribution given in percent for each bin. The list includes only those uncertainties that contribute with more than $1\%$. The following uncertainties contribute to the total uncertainty with less than $1\%$ to each bin content$:$ JES detector, JES statistical, JES physics modeling, JES mixed detector and modeling, JES close-by jets, JES pileup, JES flavor composition, JES flavor response, jet-vertex fraction, $b/\bar{b}$ acceptance, $E_{\mathrm{T}}^{\mathrm{miss}}$ modeling, $W+$ jets shape variation, $t \bar{t}$ generator, $t \bar{t}$ ISR/FSR, and unfolding. In cases when the uncertainty is report to be "$<1\%$" in the table of the paper the uncertainty is approximated by a value of $0.5\%$.


Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137745, 2023.
Inspire Record 2175556 DOI 10.17182/hepdata.135471

Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.

1 data table match query

Expected constraints in the $\kappa_\lambda$–$\kappa_t$ plane from single-Higgs analyses. The solid lines show the 68% CL contours.


Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 777 (2018) 151-162, 2018.
Inspire Record 1623558 DOI 10.17182/hepdata.79482

In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow $v_2$ reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =2.76$ TeV. The two-particle correlator $\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle$, calculated for different combinations of charges $\alpha$ and $\beta$, is almost independent of $v_2$ (for a given centrality), while the three-particle correlator $\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle$ scales almost linearly both with the event $v_2$ and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on $v_2$ points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.

1 data table match query

$\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{2}) \rangle$ (opposite charge pairs) with $|\Delta\eta| > 2.0$ as a function of centrality for shape selected events (90-100% $q_2$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.


Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-008, 2024.
Inspire Record 2764172 DOI 10.17182/hepdata.146013

A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

30 data tables match query

Expected profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Observed profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Expected profiled likelihood on $f_{\Lambda1}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

More…

Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

1 data table match query

Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.