Deep Inelastic Structure Functions From Electron Scattering on Hydrogen, Deuterium, and Iron at 0.6-{GeV}$^2 \le Q^2 \le 30$-{GeV}$^2$

Whitlow, L.W. ;
SLAC-0357, 1990.
Inspire Record 295113 DOI 10.17182/hepdata.2722

None

1 data table match query

No description provided.


A COMBINED ANALYSIS OF SLAC EXPERIMENTS ON DEEP INELASTIC e p AND e d SCATTERING

Whitlow, L.W. ; Bodek, A. ; Rock, Stephen ; et al.
Nucl.Phys.B Proc.Suppl. 16 (1990) 215-216, 1990.
Inspire Record 280954 DOI 10.17182/hepdata.2721

None

1 data table match query

No description provided.


Measurement of kinematic and nuclear dependence of R = sigma-L / sigma-t in deep inelastic electron scattering

Dasu, S. ; deBarbaro, P. ; Bodek, A. ; et al.
Phys.Rev.D 49 (1994) 5641-5670, 1994.
Inspire Record 360765 DOI 10.17182/hepdata.22468

We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.

1 data table match query

No description provided.


Measurement of the A-dependence of deep inelastic electron scattering

Gomez, J. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 49 (1994) 4348-4372, 1994.
Inspire Record 359103 DOI 10.17182/hepdata.22575

Cross sections for deep-inelastic electron scattering from liquid deuterium, gaseous He4, and solid Be, C, Al, Ca, Fe, Ag, and Au targets were measured at the Stanford Linear Accelerator Center using electrons with energies ranging from 8 to 24.5 GeV. These data cover a range in the Bjorken variable x from 0.089 to 0.8, and in momentum transfer Q2 from 2 to 15 (GeV/c)2. The ratios of cross sections per nucleon (σAσd)is for isoscalar nuclei have been extracted from the data. These ratios are greater than unity in the range 0.1<x<0.3, while for 0.3<x<0.8 they are less than unity and decrease logarithmically with atomic weight A, or linearly with average nuclear density. No Q2 dependence in the ratios was observed over the kinematic range of the data. These results are compared to various theoretical predictions.

1 data table match query

Additional overall systematic error of 1 pct plus a target to target systematic error of 0.9 pct.


Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Phys.Rev.C 73 (2006) 045205, 2006.
Inspire Record 684005 DOI 10.17182/hepdata.12254

Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.

1 data table match query

No description provided.


The proton and deuteron F_2 structure function at low Q^2

Tvaskis, V. ; Arrington, J. ; Asaturyan, R. ; et al.
Phys.Rev.C 81 (2010) 055207, 2010.
Inspire Record 844968 DOI 10.17182/hepdata.56742

Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.

1 data table match query

Proton and Deuteron cross sections and F2 structure function for an x value of 0.450, determined via the model-dependent method. Error is shown without the contribution from radiative corrections.