Diffractive Production of $K^0_s K^0_s \pi^+ \pi^- \pi^-$ in $\pi^-N$ Interactions at 200-GeV/c

Chang, C.C. ; Davis, T.C. ; Diamond, R.N. ; et al.
Phys.Rev.D 29 (1984) 1888-1894, 1984.
Inspire Record 194648 DOI 10.17182/hepdata.23730

The diffractive dissociation of a 200-GeV/c π− beam into KS0KS0π+π−π− has been observed. The diffractive KS0KS0π+π−π− cross section is 1.59±0.78 μb. The ratio of the diffractive KS0KS0π+π−π− cross section to the diffractive KS0KS0π− cross section is 0.40±0.13, which is in good agreement with a diffractive-fragmentation-model prediction of 0.36. There is evidence for simultaneous production of K*− and K*+ in the diffractive KS0KS0π+π−π− sample. The K*+−KS0π−+ mass distribution shows an enhancement near 1.95 GeV.

0 data tables match query

Production of $J/\psi$ in 16-{GeV} and 22-{GeV} $\pi^-$ Cu Collisions

LeBritton, J. ; McCal, D. ; Melissinos, A.C. ; et al.
Phys.Lett.B 81 (1979) 401-404, 1979.
Inspire Record 7053 DOI 10.17182/hepdata.50278

We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.

0 data tables match query

QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

1 data table match query

N-Jet rates from the OPAL collaboration at c.m. energy 183 GeV. Jets defined using the DURHAM alogrithm.


Analysis of the Energy Weighted Angular Correlations in Hadronic $e^+ e^-$ Annihilations at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 14 (1982) 95, 1982.
Inspire Record 12010 DOI 10.17182/hepdata.16413

Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.

0 data tables match query

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

1 data table match query

The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 22 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Aopt: Alignment uncertainty from the optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 1.5%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) Small differences in the values given here compared to the published version are related to insignificant rounding issues.


A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

18 data tables match query

Signal strength modifiers per production mode $\mu_i$.

Signal strength modifiers per decay mode $\mu^f$.

Simultaneous coupling measurement $\kappa_V/\kappa_f$

More…

Search for ZZ and ZH Production in the $\mathrm{b\bar{b}b\bar{b}}$ Final State using Proton-Proton Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-011, 2024.
Inspire Record 2772624 DOI 10.17182/hepdata.146898

A search for ZZ and ZH production in the $\mathrm{b\bar{b}b\bar{b}}$ final state is presented, where H is the standard model (SM) Higgs boson. The search uses an event sample of proton-proton collisions corresponding to an integrated luminosity of 133 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The analysis introduces several novel techniques for deriving and validating a multi-dimensional background model based on control samples in data. A multiclass multivariate classifier customized for the $\mathrm{b\bar{b}b\bar{b}}$ final state is developed to derive the background model and extract the signal. The data are found to be consistent, within uncertainties, with the SM predictions. The observed (expected) upper limits at 95% confidence level are found to be 3.8 (3.8) and 5.0 (2.9) times the SM prediction for the ZZ and ZH production cross sections, respectively.

1 data table match query

Expected and observed ZZ and ZH signal strengths and their corresponding 95% CL upper limits. The upper limits are obtained from a fit to the SvB signal probabilities under the hypothesis of no ZZ->4b or ZH->4b signal.


Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables match query

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


Measurement of the production of a $W$ boson in association with a charmed hadron in $pp$ collisions at $\sqrt{s} = 13\,\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 032012, 2023.
Inspire Record 2628732 DOI 10.17182/hepdata.136060

The production of a $W$ boson in association with a single charm quark is studied using 140 $\mathrm{fb}^{-1}$ of $\sqrt{s} = 13\,\mathrm{TeV}$ proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The charm quark is tagged by a charmed hadron, reconstructed with a secondary-vertex fit. The $W$ boson is reconstructed from an electron/muon decay and the missing transverse momentum. The mesons reconstructed are $D^{\pm} \to K^\mp \pi^\pm \pi^\pm$ and $D^{*\pm} \to D^{0} \pi^\pm \to (K^\mp \pi^\pm) \pi^\pm$, where $p_{\text{T}}(e, \mu) > 30\,\mathrm{GeV}$, $|\eta(e, \mu)| < 2.5$, $p_{\text{T}}(D) > 8\,\mathrm{GeV}$, and $|\eta(D)| < 2.2$. The integrated and normalized differential cross-sections as a function of the pseudorapidity of the lepton from the $W$ boson decay, and of the transverse momentum of the meson, are extracted from the data using a profile likelihood fit. The measured fiducial cross-sections are $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{+}) = 50.2\pm0.2\,\mathrm{(stat.)}\,^{+2.4}_{-2.3}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{-}) = 48.5\pm0.2\,\mathrm{(stat.)}\,^{+2.3}_{-2.2}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{*+}) = 51.1\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$, and $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{*-}) = 50.0\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$. Results are compared with the predictions of next-to-leading-order quantum chromodynamics calculations performed using state-of-the-art parton distribution functions. The ratio of charm to anti-charm production cross-sections is studied to probe the $s$-$\bar{s}$ quark asymmetry and is found to be $R_c^\pm = 0.971\pm0.006\,\mathrm{(stat.)}\pm0.011\,\mathrm{(syst.)}$.

1 data table match query

Measured $|\eta(\ell)|$ differential fiducial cross-section times the single-lepton-flavor W boson branching ratio in the $W^{+}+D^{*-}$ channel with the full breakdown of uncertainties.


Topology of Hadronic $e^+ e^-$ Annihilation Events at 22-{GeV} and 34-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J.H. ; et al.
Phys.Lett.B 110 (1982) 329-334, 1982.
Inspire Record 169195 DOI 10.17182/hepdata.30996

The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.

0 data tables match query