Measurements of the associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Eur.Phys.J.C 82 (2022) 1094, 2022.
Inspire Record 1982672 DOI 10.17182/hepdata.114364

Measurements of the associated production of a W boson and a charm (c) quark in proton-proton collisions at a centre-of-mass energy of 8 TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction $\sigma$(pp $\to$ W + c + X) $\mathcal{B}$(W $\to$$\ell\nu$), where $\ell$ = e or $\mu$, and the cross section ratio $\sigma$(pp $\to$ W$^+$ + c + X) / $\sigma$(pp $\to$ W$^-$ + $\mathrm{\bar{c}}$ + X) are measured inclusively and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

6 data tables

Signal yields after background subtraction, efficiency*acceptance correction factors, and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet).

Measured production cross sections $\sigma(W^+ + \overline{c})$, $\sigma(W^- + c)$ and their ratio.

Measured diferential cross sections $\sigma(W^- + c) + \sigma(W^+ + \overline{c})$ as a function of the absolute value of the pseudorapidity of the lepton from the W decay.

More…

Version 4
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 488, 2021.
Inspire Record 1850544 DOI 10.17182/hepdata.102525

Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_H$ = 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.

52 data tables

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

More…

Observation of Higgs boson decay to bottom quarks

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 121801, 2018.
Inspire Record 1691854 DOI 10.17182/hepdata.86132

The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, are described. When combined with previous VH measurements using data collected at $\sqrt{s}=$ 7, 8, and 13 TeV, an excess of events is observed at $m_\mathrm{H} =$ 125.09 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01 $\pm$ 0.22. The combination of this result with searches by the CMS experiment for H $\to\mathrm{b\overline{b}}$ in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04 $\pm$ 0.20.

2 data tables

Expected and observed significances, in number of standard deviations, and observed signal strengths for the VH production process with H-->b bbar. Results are shown separately for 2017 data, combined Run 2 (2016 and 2017 data), and for the combination of the Run 1 and Run 2 data. For the 2017 analysis, results are shown separately for the individual mu value for each channel from a combined simultaneous fit to all channels. All results are obtained for mH=125.09 GeV. Data are from Table 2 and 2016 added from Figure 1b.

Best-fit value of the H-->b bbar signal strength with its 1 sigma systematic (red) and total (blue) uncertainties for the five individual production modes considered, as well as the overall combined result. The vertical dashed line indicates the standard model expectation. All results are extracted from a single fit combining all input analyses, with mH = 125.09 GeV. Data from Figure 3.


Measurement of associated Z + charm production in proton-proton collisions at $\sqrt{s} = $ 8 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 287, 2018.
Inspire Record 1634835 DOI 10.17182/hepdata.85868

A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with $p_{\rm T}^{\ell} > $ 20 GeV, ${|\eta^{\ell}|} < $ 2.1, 71 $ < m_{\ell\ell} < $ 111 GeV, and heavy flavour jets with $p_{\rm T}^{{\rm jet}} > $ 25 GeV and ${|\eta^{{\rm jet}}|} < $ 2.5. The Z + c production cross section is measured to be $\sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{c} + \mathrm{X}) {\cal B}(\mathrm{Z} \rightarrow \ell^+\ell^-) = $ 8.8 $ \pm $ 0.5 (stat) $ \pm $ 0.6 (syst) pb. The ratio of the Z + c and Z + b production cross sections is measured to be $\sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{c} + \mathrm{X}) / \sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{b} + \mathrm{X}) = $ 2.0 $ \pm $ 0.2 (stat) $ \pm $ 0.2 (syst). The Z + c production cross section and the cross section ratio are also measured as a function of the transverse momentum of the Z boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.

28 data tables

Signal yields N(Z+c) and N(Z+b), efficiency*acceptance correction factors C(Z+c) and C(Z+b), cross section sigma(Z+c)B and cross section ratios sigma(Z+c)/sigma(Z+b) in the three categories (semileptonic, D+-, D*) and in the two Z boson decay channels (e+e-, mu+mu-). The factors that correct the acceptance and selection inefficiencies are also given. They include the relevant branching fraction for the corresponding channel. All uncertainties quoted in the table are statistical, except for those of the measured cross sections and cross section ratios where the first uncertainty is statistical and the second is the estimated systematic uncertainty

Z+c and Z+b signal yields, differential cross section dsigma(Z+c)/dpTZ times branching ratio and differential cross sections ratio dsigma(Z+c)/dpTZ / dsigma(Z+b)/dpTZ for three ranges of the transverse momentum of the Z boson in the semileptonic mode

Z+c and Z+b signal yields, differential cross section dsigma(Z+c)/dpTZ times branching ratio and differential cross sections ratio dsigma(Z+c)/dpTZ / dsigma(Z+b)/dpTZ for three ranges of the transverse momentum of the jet in the semileptonic mode

More…

Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2017) 047, 2017.
Inspire Record 1608162 DOI 10.17182/hepdata.80189

Properties of the Higgs boson are measured in the H to ZZ to 4l (l= e, mu) decay channel. A data sample of proton-proton collisions at sqrt(s) = 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 inverse femtobarns is used. The signal strength modifier mu, defined as the ratio of the observed Higgs boson rate in the H to ZZ to 4l decay channel to the standard model expectation, is measured to be mu = 1.05 +0.19/-0.17 at m[H ]= 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2.92 +0.48/-0.44 (stat) +0.28/-0.24 (syst) fb, which is compatible with the standard model prediction of 2.76 +/- 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m[H] = 125.26 +/- 0.21 GeV and the width is constrained using on-shell production to be Gamma[H] < 1.10 GeV, at 95% confidence level.

7 data tables

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Higgs fiducial cross section in bins of pT for the 4 leptons. The first uncertainty is statistical, the second is systematic uncertainties. The numbers in this HEP data entry are not divided by the bin width, and therefore the units are in fb.

Higgs fiducial cross section in bins of Jet Multiplicity The first uncertainty is statistical, the second is systematic uncertainty.

More…

Measurements of the pp to W gamma gamma and pp to Z gamma gamma cross sections and limits on anomalous quartic gauge couplings at sqrt(s) = 8 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2017) 072, 2017.
Inspire Record 1589287 DOI 10.17182/hepdata.79858

Measurements are presented of W gamma gamma and Z gamma gamma production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 inverse femtobarns collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the W to l nu and Z to ll decay modes, where l is a muon or an electron. The production of W gamma gamma and Z gamma gamma, measured with significances of 2.6 and 5.9 standard deviations, respectively, is consistent with standard model predictions. In addition, limits on anomalous quartic gauge couplings in W gamma gamma production are determined in the context of a dimension-8 effective field theory.

2 data tables

Measured fiducial cross section for each channel and for the combination of channels for the WGG and ZGG analyses. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

Expected and observed 95% CL limits on anomalous quartic gauge couplings. Limits are obtained using WGG events in which the leading photon pT exceeds 70 GeV.


Measurement of the cross section for electroweak production of Z gamma in association with two jets and constraints on anomalous quartic gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 770 (2017) 380-402, 2017.
Inspire Record 1512924 DOI 10.17182/hepdata.77543

A measurement is presented of the cross section for the electroweak production of a Z boson and a photon in association with two jets in proton-proton collisions at sqrt(s)= 8 TeV. The Z bosons are identified through their decays to electron or muon pairs. The measurement is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 inverse femtobarns. The electroweak contribution has a significance of 3.0 standard deviations, and the measured fiducial cross section is 1.86 +0.90/-0.75 (stat) +0.34/-0.26 (syst) +/- 0.05 (lumi) fb, while the summed electroweak and quantum chromodynamic total cross section in the same region is observed to be 5.94 +1.53/-1.35 (stat) +0.43/-0.37 (syst) +/- 0.13 (lumi) fb. Both measurements are consistent with the leading-order standard model predictions. Limits on anomalous quartic gauge couplings are set based on the Z gamma mass distribution.

1 data table

The measured fiducial cross section of EW ZGamma+2Jets process.


Measurement of electroweak-induced production of W gamma with two jets in pp collisions at sqrt(s)=8 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 06 (2017) 106, 2017.
Inspire Record 1507095 DOI 10.17182/hepdata.78254

A measurement of electroweak-induced production of W gamma and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment in sqrt(s) = 8 TeV proton-proton collisions produced at the LHC. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of W gamma with two jets is observed with a significance of 2.7 standard deviations. The cross section measured in the fiducial region is 10.8 +/- 4.1 (stat) +/- 3.4 (syst) +/- 0.3 (lumi) fb, which is consistent with the standard model electroweak predictions. The total cross section for W gamma production in association with 2 jets in the same fiducial region is measured to be 23.2 +/- 4.3 (stat) +/- 1.7 (syst) +/- 0.6 (lumi) fb, which is consistent with the standard model prediction from the combination of electroweak- and quantum chromodynamics-induced processes. No deviations are observed from the standard model predictions and experimental limits on anomalous quartic gauge couplings f[M, 0-7] / Lambda^4, f[T, 0-2] / Lambda^4, and f[T, 5-7] / Lambda^4 are set at 95% confidence level.

2 data tables

Summary of the measured and predicted observables.

Observed and expected shape-based exclusion limits for the aQGC parameters at 95% CL, without any form factors.


Measurements of the associated production of a Z boson and b jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 751, 2017.
Inspire Record 1499471 DOI 10.17182/hepdata.77544

Measurements of the associated production of a Z boson with at least one jet originating from a b quark in proton-proton collisions at sqrt(s) = 8 TeV are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8 inverse femtobarns. Z bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the b jet and the Z boson. Ratios of differential cross sections for the associated production with at least one b jet to the associated production with any jet are also presented. The production of a Z boson with two b jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.

20 data tables

Differential fiducial cross section for Z(1b) production as a function of the leading b jet pT

Cross section ratio for Z(1b) and Z+jets production as a function of the leading b/inclusive (j) jet pT

Differential fiducial cross section for Z(1b) production as a function of the leading b jet |eta|

More…

Measurements of the differential production cross sections for a Z boson in association with jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 022, 2017.
Inspire Record 1497519 DOI 10.17182/hepdata.128149

Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 inverse femtobarns. Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.

128 data tables

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the the cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the 1$^\text{st}$ jet $p_{\text{T}}$, $p_{\text{T}}(\text{j}_1)$, and breakdown of the relative uncertainty.

More…

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

78 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.

More…

Measurement of the WZ production cross section in pp collisions at sqrt{s} = 7 and 8 TeV and search for anomalous triple gauge couplings at sqrt{s} = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 236, 2017.
Inspire Record 1487288 DOI 10.17182/hepdata.89400

The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9 inverse femtobarns collected at sqrt(s)= 7 TeV, and 19.6 inverse femtobarns at sqrt(s)= 8 TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for 71 < m[Z] < 111 GeV are sigma(pp to WZ; sqrt(s)= 7 TeV) = 20.14 +/- 1.32 (stat) +/- 1.13 (syst) +/- 0.44 (lumi) pb and sigma(pp to WZ; sqrt(s)= 8 TeV) = 24.09 +/- 0.87 (stat) +/- 1.62 (syst) +/- 0.63 (lumi) pb. Differential cross sections with respect to the Z boson pt, the leading jet pt, and the number of jets are obtained using the sqrt(s)= 8 TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.

5 data tables

The measured WZ cross section for 71 < mZ < 111 GeV using 7 TeV data. The theory uncertainty only includes QCD scales variations.

The measured WZ cross section for 71 < mZ < 111 GeV using 8 TeV data. The theory uncertainty only includes QCD scales variations.

Differential cross section as function of the Z boson transverse momentum.

More…

Measurement of the production cross section of the W boson in association with two b jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 92, 2017.
Inspire Record 1484162 DOI 10.17182/hepdata.76543

The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at sqrt(s) = 8 TeV collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8 inverse femtobarns. The W bosons are reconstructed via their leptonic decays, W to l nu, where l = mu or e. The fiducial region studied contains exactly one lepton with transverse momentum pt[l] > 30 GeV and pseudorapidity abs(eta[l]) < 2.1, with exactly two b jets with pt > 25 GeV and abs(eta) < 2.4 and no other jets with pt > 25 GeV and abs(eta) < 4.7. The cross section is measured to be sigma(pp to W (l nu)+ bb-bar) = 0.64 +/- 0.03 (stat) +/- 0.10 (syst) +/- 0.06 (theo) +/- 0.02 (lumi) pb, in agreement with standard model predictions.

1 data table

Wbb production cross section in pb.


Measurement of electroweak production of a W boson and two forward jets in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 11 (2016) 147, 2016.
Inspire Record 1477806 DOI 10.17182/hepdata.76993

A measurement is presented of the cross section for the electroweak production of a W boson in association with two jets in proton-proton collisions at a center-of-mass energy of 8 TeV. The data set was collected with the CMS detector and corresponds to an integrated luminosity of 19.3 inverse femtobarns. The measured fiducial cross section for W bosons decaying to electrons or muons and for pT(j1) > 60 GeV, pT(j2) > 50 GeV, |eta(j)| < 4.7, and m(jj) > 1000 GeV is 0.42 +/- 0.04 (stat) +/- 0.09 (syst) +/- 0.01 (lumi) pb. This result is consistent with the standard model leading-order prediction of 0.50 +/- 0.02 (scale) +/- 0.02 (PDF) pb obtained with MADGRAPH5_aMC@NLO 2.1 interfaced to PYTHIA 6.4. This is the first cross section measurement for this process.

1 data table

The measured values for the EW W(-->env, munv)+2-jets fiducial cross section.


Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Measurement of the integrated and differential t-tbar production cross sections for high-pt top quarks in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 072002, 2016.
Inspire Record 1454211 DOI 10.17182/hepdata.78540

The cross section for pair production of top quarks (t-tbar) with high transverse momenta is measured in pp collisions, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed using lepton+jets events, where one top quark decays semileptonically, while the second top quark decays to a hadronic final state. The hadronic decay is reconstructed as a single, large-radius jet, and identified as a top quark candidate using jet substructure techniques. The integrated cross section and the differential cross sections as a function of top quark pt and rapidity are measured at particle level within a fiducial region related to the detector-level requirements and at parton level. The particle-level integrated cross section is found to be sigma[t-tbar] = 0.499 +/- 0.035 (stat+syst) +/- 0.095 (theory) +/- 0.013 (lumi) pb for top quark pt > 400 GeV. The parton-level measurement is sigma[t-tbar] = 1.44 +/- 0.10 (stat+syst) +/- 0.29 (theory) +/- 0.04 (lumi) pb. The integrated and differential cross section results are compared to predictions from several event generators.

3 data tables

The measurements of the integrated cross sections for $p_T^t > 400$ GeV.

Differential $t\bar{t}$ cross section in bins of $p_T$ for the $t$ jet at the particle level and the top quark at parton level.

Differential $t\bar{t}$ cross section in bins of $y$ for the $t$ jet at the particle level and the top quark at parton level.


Evidence for exclusive gamma-gamma to W+ W- production and constraints on anomalous quartic gauge couplings at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 119, 2016.
Inspire Record 1448100 DOI 10.17182/hepdata.74707

A search for exclusive or quasi-exclusive gamma gamma to W+W- production, via pp to p(*) W+W- p(*) to p(*) mu+/- e-/+ at sqrt(s) = 8 TeV, is reported using data corresponding to an integrated luminosity of 19.7 inverse femtobarns. Events are selected by requiring the presence of an electron-muon pair with large transverse momentum pt(mu+/- e-/+) > 30 GeV, and no associated charged particles detected from the same vertex. The 8 TeV results are combined with the previous 7 TeV results (obtained for 5.05 inverse femtobarns of data). In the signal region, 13 (2) events are observed over an expected background of 3.9 +/- 0.6 (0.84 +/-0.15) events for 8 (7) TeV, resulting in a combined excess of 3.4 standard deviations over the background-only hypothesis. The observed yields and kinematic distributions are compatible with the standard model prediction for exclusive and quasi-exclusive gamma gamma to W+W- production. Upper limits on the anomalous quartic gauge coupling operators a[W;0,C] (dimension-6) and f[M0,1,2,3] (dimension-8), the most stringent to date, are derived from the measured dilepton transverse momentum spectrum.

1 data table

8 TeV cross section multiplied by branching fraction to opposite-sign mue final states, corrected for all experimental efficiencies and extrapolated to the full phase space.


Measurement of the t-tbar production cross section in the e-mu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 029, 2016.
Inspire Record 1426692 DOI 10.17182/hepdata.74208

The inclusive cross section for top quark pair production is measured in proton-proton collisions at sqrt(s) = 7 and 8 TeV, corresponding to 5.0 and 19.7 invers-femtobarns, respectively, with the CMS experiment at the LHC. The cross sections are measured in the electron-muon channel using a binned likelihood fit to multi-differential final state distributions related to identified b quark jets and other jets in the event. The measured cross section values are 173.6 +/- 2.1 (stat) +4.5-4.0 (syst) +/- 3.8 (lumi) pb at sqrt(s) = 7 TeV, and 244.9 +/- 1.4 (stat) +6.3-5.5 (syst) +/- 6.4 (lumi) pb at sqrt(s) = 8 TeV, in good agreement with QCD calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions defined by the acceptance requirements on the two charged leptons in the final state. The cross section results are used to determine the top quark pole mass via the dependence of the theoretically predicted cross section on the mass, giving a best result of 173.8 +1.7-1.8 GeV. The data at sqrt(s) = 8 TeV are also used to set limits, for two neutralino mass values, on the pair production of supersymmetric top squarks with masses close to the top quark mass.

3 data tables

Measurement of the visible $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV. The visible cross section is defined for events containing an oppositely charged $\rm{e}\mu$ pair from the decay chain ${\rm t} \rightarrow {\rm W b} \rightarrow {\ell} \nu {\rm b}$ (including ${\rm W} \rightarrow \tau \nu \rightarrow {\ell} \nu \nu \nu$) and with both leptons satisfying $p_T > 20\, \rm{GeV}$ and $|{\eta}| < 2.4$.

Measurement of the inclusive $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV.

Top quark pole mass at NNLO+NNLL extracted by comparing the measured $t\bar{t}$ production cross sections at 7 and 8 TeV with predictions employing different PDF sets. The uncertainties of the CT14 PDF set are scaled to 68% confidence level.


Measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 448-468, 2016.
Inspire Record 1423069 DOI 10.17182/hepdata.74458

A measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV is presented, using data corresponding to an integrated luminosity of 19.6 inverse femtobarns collected with the CMS detector at the LHC. This measurement is based on the observation of events with large missing energy and with a single photon with transverse momentum above 145 GeV and absolute pseudorapidity in the range |eta| < 1.44. The measured Z gamma to nu nu-bar gamma production cross section, 52.7 +/- 2.1(stat) +/- 6.4 (syst) +/- 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0 +2.4 -2.2 fb. A study of the photon transverse momentum spectrum yields the most stringent limits to date on the anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings.

2 data tables

Z gamma -> nu nu gamma production cross section.

One-dimensional 95% CL limits on ZVgamma anomalous trilinear gauge couplings from the Z gamma -> nu nu gamma channel.


Measurement of spin correlations in t t-bar production using the matrix element method in the muon + jets final state in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 758 (2016) 321-346, 2016.
Inspire Record 1405439 DOI 10.17182/hepdata.70230

The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon + jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The data are compared with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 +/- 0.08 (stat) +0.15 -0.13 (syst), representing the most precise measurement of this quantity in the lepton + jets final state to date.

1 data table

The result of the template fit of distributions for uncorrelated and SM-like correlated ttbar spins.


Search for a low-mass pseudoscalar Higgs boson produced in association with a b-bbar pair in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 758 (2016) 296-320, 2016.
Inspire Record 1403990 DOI 10.17182/hepdata.73991

A search is reported for a light pseudoscalar Higgs boson decaying to a pair of tau leptons, produced in association with a b b-bar pair, in the context of two-Higgs-doublet models. The results are based on pp collision data at a centre-of-mass energy of 8 TeV collected by the CMS experiment at the LHC and corresponding to an integrated luminosity of 19.7 inverse femtobarns. Pseudoscalar boson masses between 25 and 80 GeV are probed. No evidence for a pseudoscalar boson is found and upper limits are set on the production cross section times branching fraction to tau pairs between 7 and 39 pb at the 95% confidence level. This excludes pseudoscalar A bosons with masses between 25 and 80 GeV, with standard model-like Higgs boson negative couplings to down-type fermions, produced in association with b b-bar pairs, in Type-II, two-Higgs-doublet models.

1 data table

Expected and observed 95 % CL combined upper limits in pb on pseudoscalar Higgs bosons produced in association with bb pairs, along with their 1 and 2 standard deviation uncertainties.


Observation of top quark pairs produced in association with a vector boson in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 01 (2016) 096, 2016.
Inspire Record 1396140 DOI 10.17182/hepdata.69486

Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8 TeV pp collision data corresponding to an integrated luminosity of 19.5 inverse femtobarns, collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identified by matching reconstructed objects in the detector to specific final state particles from ttW or ttZ decays. The ttW cross section is measured to be 382 +117 -102 fb with a significance of 4.8 standard deviations from the background-only hypothesis. The ttZ cross section is measured to be 242 +65 -55 fb with a significance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the ttW and ttZ cross sections.

6 data tables

Expected yields after the final fit, compared to the observed data for OS t$\bar{\mathrm{t}}$Z final states. Here ``hf'' and ``lf'' stand for heavy and light flavors, respectively.

Expected yields after the final fit, compared to the observed data for SS t$\bar{\mathrm{t}}$W final states. The multiboson process includes WWW, WWZ, and W$^{\pm}$W$^{\pm}$; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.

Expected yields after the final fit, compared to the observed data for 3$\ell$ t$\bar{\mathrm{t}}$W and three and 4$\ell$ t$\bar{\mathrm{t}}$Z final states. The 4$\ell$ ``Z-veto'' channel has exactly one lepton pair consistent with a Z boson decay; the ``Z'' channel has two. The multiboson process includes WWW and WWZ; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.

More…

Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 13, 2016.
Inspire Record 1391147 DOI 10.17182/hepdata.75470

A measurement is presented of differential cross sections for the Higgs boson (H) production in pp collisions at sqrt(s) = 8 TeV. The analysis exploits the H to gamma gamma decay in data corresponding to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities abs(eta) < 2.5, and with the photon of largest and next-to-largest transverse momentum (pt[gamma]) divided by the diphoton mass m[gamma-gamma] satisfying the respective conditions of pt[gamma] / m[gamma-gamma] > 1/3 and > 1/4, the total fiducial cross section is 32 +/- 10 fb.

13 data tables

Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of kinematic observables as measured in data and as predicted in SM simulations. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.

Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of $p_{\rm{T}}^{\gamma\gamma}$ as measured in data. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.

Values of the pp $\to$ H $\to \gamma\gamma$ differential cross sections as a function of |$\cos\theta^{\ast}$| as measured in data. For each observable the fit to $m_{\gamma\gamma}$ is performed simultaneously in all the bins. Since the signal mass is profiled for each observable, the best fit $\hat{m}_{\rm{H}}$ varies from observable to observable.

More…

Search for neutral MSSM Higgs bosons decaying to $\mu^{+} \mu^{-}$ in pp collisions at $ \sqrt{s} =$ 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 752 (2016) 221-246, 2016.
Inspire Record 1386854 DOI 10.17182/hepdata.70526

A search for neutral Higgs bosons predicted in the minimal supersymmetric standard model (MSSM) for mu+ mu- decay channels is presented. The analysis uses data collected by the CMS experiment at the LHC in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.3 inverse femtobarns, respectively. The search is sensitive to Higgs bosons produced through the gluon fusion process or in association with a bb quark pair. No statistically significant excess is observed in the mu+ mu- mass spectrum. Results are interpreted in the framework of several benchmark scenarios, and the data are used to set an upper limit on the MSSM parameter tan(beta) as a function of the mass of the pseudoscalar A boson in the range from 115 to 300 GeV. Model independent upper limits are given for the product of the cross section and branching fraction for gluon fusion and b quark associated production. They are the most stringent limits obtained to date in this channel.

3 data tables

The 95% CL upper limit on tan B as a function of mA, after combining the data from the two event categories at the two centre-of-mass energies (7 and 8 TeV). The results are obtained in the framework of the mh-mod+ benchmark scenario.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to b quark associated production, obtained using data collected at swrt(s) = 8 TeV.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to gluon-fusion production, obtained using data collected at swrt(s) = 8 TeV.


Measurement of the W+ W- cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 401, 2016.
Inspire Record 1382594 DOI 10.17182/hepdata.79411

A measurement of the W boson pair production cross section in proton-proton collisions at sqrt(s) = 8 TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4 inverse femtobarns. The W+W- candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured W+W- cross section is 60.1 +/- 0.9 (stat) +/- 3.2 (exp) +/- 3.1 (theo) +/- 1.6 (lum) pb = 60.1 +/- 4.8 pb, consistent with the standard model prediction. The W+W- cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -5.7 < c[WWW]/Lambda^2 < 5.9 TeV^{-2}, -11.4 < c[W]/Lambda^2 < 5.4 TeV^{-2}, -29.2 < c[B]/Lambda^2 < 23.9 TeV^{-2}, in the HISZ basis.

9 data tables

The W+W- production cross section combining the four event categories (different-flavor and same-flavor in the 0-jet and 1-jet bin separately) by performing a profile likelihood fit to the data.

The W+W- production cross section in fiducial regions defined by requiring no jets at particle level with jet pT thresholds as listed.

The W+W- production cross section in fiducial regions defined by requiring zero jets at particle level with varying jet pT thresholds and requiring prompt leptons with pT > 20 GeV and abs(eta) < 2.5, before final-state radiation.

More…