The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adler, Alexander
;
*et al. *

2019.

http://inspirehep.net/literature/1762369
Inspire Record
1762369
DOI
10.17182/hepdata.94238
https://doi.org/10.17182/hepdata.94238
This Letter presents the first direct investigation of the p-$\Sigma^{0}$ interaction, using the femtoscopy technique in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV measured by the ALICE detector. The $\Sigma^{0}$ is reconstructed via the decay channel to $\Lambda \gamma$, and the subsequent decay of $\Lambda$ to p$\pi^{-}$. The photon is detected via the conversion in material to e$^{+}$e$^{-}$ pairs exploiting the unique capability of the ALICE detector to measure electrons at low transverse momenta. The measured p-$\Sigma^{0}$ correlation indicates a shallow strong interaction. The comparison of the data to several theoretical predictions obtained employing the Correlation Analysis Tool using the Schrödinger Equation (CATS) and the Lednický-Lyuboshits approach shows a reasonable agreement. The presented femtoscopic data cannot yet discriminate between different models, which is also the case for the available scattering and hypernuclei data. Nevertheless, the p-$\Sigma^{0}$ correlation function is found to be sensitive to the strong interaction, and driven by the interplay of the different spin and isospin channels. This pioneering study demonstrates the feasibility of a femtoscopic measurement in the p-$\Sigma^{0}$ channel and with the expected larger data samples in LHC Run 3 and Run 4, the p-$\Sigma^{0}$ interaction will be constrained with high precision.

2
data tables

Measured p$-$p $\oplus$ $\overline{\mathrm{p}}-\overline{\mathrm{p}}$ correlation function.

The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adler, Alexander
;
*et al. *

JHEP 2004 (2020) 192, 2020.

http://inspirehep.net/literature/1762350
Inspire Record
1762350
DOI
10.17182/hepdata.94414
https://doi.org/10.17182/hepdata.94414
This article reports measurements characterizing the Underlying Event (UE) associated with hard scatterings at midrapidity ($ |\eta| < 0.8 $) in pp collisions at $\sqrt{s}$ = 13 TeV. The hard scatterings are identified by the leading particle, the charged particle with the highest transverse momentum ($p_{\rm{T}}^{\rm{leading}}$) in the event. Charged-particle numbers and summed transverse-momentum densities are measured in different azimuthal regions defined with respect to the leading particle direction: Toward, Transverse, and Away. The Toward and Away regions contain the fragmentation products of the hard scatterings in addition to the UE contribution, whereas particles in the Transverse region are expected to originate predominantly from the UE. The study is performed as a function of $p_{\rm{T}}^{\rm{leading}}$ with three different $p_{\rm{T}}$ thresholds for the associated particles, $p_{\rm{T}}^{\rm{track}}>$ 0.15, 0.5, and 1.0 GeV/$c$. The charged-particle density in the Transverse region rises steeply for low values of $p_{\rm{T}}^{\rm{leading}}$ and reaches a plateau. The results confirm the trend observed at lower collision energies that the charged-particle density in the Transverse region shows a stronger increase with $\sqrt{s}$ than the inclusive charged-particle density at midrapidity. The plateau in the Transverse region ($5 < p_{\rm{T}}^{\rm{leading}} < 40$ GeV/$c$) is further characterized by the probability distribution of its charged-particle multiplicity normalized to its average value (relative transverse activity, $R_{\rm{T}}$) and the mean transverse momentum as a function of $R_{\rm{T}}$. Experimental results are compared to model calculations obtained using PYTHIA 8 and EPOS LHC. The overall agreement between models and data is within 30%. These measurements provide new insights on the interplay between hard scatterings and the associated UE in pp collisions.

5
data tables

The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adhya, Souvik Priyam
;
*et al. *

Eur.Phys.J. C80 (2020) 167, 2020.

http://inspirehep.net/literature/1748157
Inspire Record
1748157
DOI
10.17182/hepdata.93535
https://doi.org/10.17182/hepdata.93535
The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($\ |y\ | < 0.5$) are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. It is found that the production rates of $\rm{K}^{0}_{S}$, $\Lambda$, $\Xi$, and $\Omega$ increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. The yields of strange hadrons are found to depend only on the mid-rapidity multiplicity for charged particle multiplicity estimators selecting in the forward region, which turn out to be more directly related to the number of Multiple Parton Interactions. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.

59
data tables

The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adhya, Souvik Priyam
;
*et al. *

Phys.Rev.Lett. 124 (2020) 092301, 2020.

http://inspirehep.net/literature/1737592
Inspire Record
1737592
DOI
10.17182/hepdata.93732
https://doi.org/10.17182/hepdata.93732
The study of the strength and behavior of the antikaon-nucleon (K¯N) interaction constitutes one of the key focuses of the strangeness sector in low-energy quantum chromodynamics (QCD). In this Letter a unique high-precision measurement of the strong interaction between kaons and protons, close and above the kinematic threshold, is presented. The femtoscopic measurements of the correlation function at low pair-frame relative momentum of (K+p⊕K−p¯) and (K-p⊕K+p¯) pairs measured in pp collisions at s=5, 7, and 13 TeV are reported. A structure observed around a relative momentum of 58 MeV/c in the measured correlation function of (K-p⊕K+p¯) with a significance of 4.4σ constitutes the first experimental evidence for the opening of the (K¯0n⊕K0n¯) isospin breaking channel due to the mass difference between charged and neutral kaons. The measured correlation functions have been compared to Jülich and Kyoto models in addition to the Coulomb potential. The high-precision data at low relative momenta presented in this work prove femtoscopy to be a powerful complementary tool to scattering experiments and provide new constraints above the K¯N threshold for low-energy QCD chiral models.

7
data tables

K-p correlation function in p-p collisions at $\sqrt{s}=5$ TeV.

K-p correlation function in p-p collisions at $\sqrt{s}=7$ TeV.

K-p correlation function in p-p collisions at $\sqrt{s}=13$ TeV.

The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adhya, Souvik Priyam
;
*et al. *

2019.

http://inspirehep.net/literature/1735349
Inspire Record
1735349
DOI
10.17182/hepdata.90845
https://doi.org/10.17182/hepdata.90845
This work presents new constraints on the existence and the binding energy of a possible $\Lambda$-$\Lambda$ bound state, the H-dibaryon, derived from $\Lambda$-$\Lambda$ femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at $\sqrt{s}=13$ TeV and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV, combined with previously published results from p-Pb collisions at $\sqrt{s}=7$ TeV. The $\Lambda$-$\Lambda$ scattering parameter space, spanned by the inverse scattering length $f_0^{-1}$ and the effective range $d_0$, is constrained by comparing the measured $\Lambda$-$\Lambda$ correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the $\Lambda$-$\Lambda$ interaction. The region in the $(f_0^{-1},d_0)$ plane which would accommodate a $\Lambda$-$\Lambda$ bound state is substantially restricted compared to previous studies. The binding energy of the possible $\Lambda$-$\Lambda$ bound state is estimated within an effective-range expansion approach and is found to be $B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\mathrm{(stat)}^{+1.8}_{-1.0}\mathrm{(syst)}$ MeV.

8
data tables

Exclusion plot for the $\Lambda$-$\Lambda$ binding energy (statistical uncertainty).

Exclusion plot for the $\Lambda$-$\Lambda$ binding energy (total uncertainty).

p-p correlation function in p-p collisions at $\sqrt{s}=13$ TeV.

The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adhya, Souvik Priyam
;
*et al. *

2019.

http://inspirehep.net/literature/1733689
Inspire Record
1733689
DOI
10.17182/hepdata.91239
https://doi.org/10.17182/hepdata.91239
The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of $5<p_\mathrm{T}<100\ \mathrm{GeV}/c$ in pp collisions at the center-of-mass energy of $\sqrt{s} = 5.02\ \mathrm{TeV}$ with the ALICE detector. The jets are reconstructed using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R=0.2$, $0.3$, $0.4$, and $0.6$ in the pseudorapidity range $|\eta|< 0.9-R$. The charged jet cross sections are compared with the leading order (LO) and to next-to-leading order (NLO) perturbative Quantum ChromoDynamics (pQCD) calculations. It was found that the NLO calculations agree better with the measurements. The cross section ratios for different resolution parameters were also measured. These ratios increase from low $p_\mathrm{T}$ to high $p_\mathrm{T}$ and saturate at high $p_\mathrm{T}$, indicating that jet collimation is larger at high $p_\mathrm{T}$ than at low $p_\mathrm{T}$. These results provide a precision test of pQCD predictions and serve as a baseline for the measurement in Pb$-$Pb collisions at the same energy to quantify the effects of the hot and dense medium created in heavy-ion collisions at the LHC.

4
data tables

The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adhya, Souvik Priyam
;
*et al. *

2019.

http://inspirehep.net/literature/1723697
Inspire Record
1723697
DOI
10.17182/hepdata.90955
https://doi.org/10.17182/hepdata.90955
Measurements of anisotropic flow coefficients ($v_n$) and their cross-correlations using two- and multi-particle cumulant methods are reported in collisions of pp at $\sqrt{s} = 13$ TeV, p-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV, Xe-Xe at $\sqrt{s_{_{\rm NN}}} = 5.44$ TeV, and Pb-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV recorded with the ALICE detector. These measurements are performed as a function of multiplicity in the mid-rapidity region $|\eta|<0.8$ for the transverse momentum range $0.2 < p_{\rm T} < 3.0$ GeV/$c$. An ordering of the coefficients $v_2 > v_3 > v_4$ is found in pp and p-Pb collisions, similar to that seen in large collision systems, while a weak $v_2$ multiplicity dependence is observed relative to nucleus--nucleus collisions in the same multiplicity range. Using the novel subevent method, $v_{2}$ measured in pp and p-Pb collisions with four-particle cumulants is found to be compatible with that from six-particle cumulants. The symmetric cumulants $SC(m,n)$ calculated with the subevent method which evaluate the correlation strength between $v_n^2$ and $v_m^2$ are also presented. The presented data, which add further support to the existence of long-range multi-particle azimuthal correlations in high multiplicity pp and p-Pb collisions, can neither be described by PYTHIA8 nor by IP-Glasma+MUSIC+UrQMD model calculations, and hence provide new insights into the understanding of collective effects in small collision systems.

43
data tables

$v_2\{2\}$ with $|\Delta \eta| > 1.4$ in pp collisions at $\sqrt{s} = 13$ TeV.

$v_3\{2\}$ with $|\Delta \eta| > 1.0$ in pp collisions at $\sqrt{s} = 13$ TeV.

$v_4\{2\}$ with $|\Delta \eta| > 1.0$ in pp collisions at $\sqrt{s} = 13$ TeV.

The
ALICE
collaboration
Acharya, Shreyasi
;
Torales - Acosta, Fernando
;
Adamova, Dagmar
;
*et al. *

2018.

http://inspirehep.net/literature/1672788
Inspire Record
1672788
DOI
10.17182/hepdata.85869
https://doi.org/10.17182/hepdata.85869
The measurement of dielectron production is presented as a function of invariant mass and transverse momentum ($p_{\rm T}$) at midrapidity ($|y_{\rm e}|<0.8$) in proton-proton (pp) collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at $\sqrt{s}=7$ TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=974\pm138(\rm{stat.})\pm140(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=79\pm14(\rm{stat.})\pm11(\rm{syst.})~\mu{\rm b}$ using PYTHIA simulations and ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=1417\pm184(\rm{stat.})\pm204(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=48\pm14(\rm{stat.})\pm7(\rm{syst.})~\mu{\rm b}$ for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various $p_{\rm T}$ intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of $p_{\rm T}$. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations.

16
data tables

The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Aggarwal, Madan Mohan
;
*et al. *

2017.

http://inspirehep.net/literature/1511865
Inspire Record
1511865
DOI
10.17182/hepdata.77781
https://doi.org/10.17182/hepdata.77781
We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

14
data tables

Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of $J/\psi$ as a function of rapidity.

Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.

The
ALICE
collaboration
Adam, Jaroslav
;
Adamova, Dagmar
;
Aggarwal, Madan Mohan
;
*et al. *

Phys.Lett. B753 (2016) 319-329, 2016.

http://inspirehep.net/literature/1395253
Inspire Record
1395253
DOI
10.17182/hepdata.70847
https://doi.org/10.17182/hepdata.70847
The pseudorapidity ( η ) and transverse-momentum ( pT ) distributions of charged particles produced in proton–proton collisions are measured at the centre-of-mass energy s=13 TeV . The pseudorapidity distribution in |η|<1.8 is reported for inelastic events and for events with at least one charged particle in |η|<1 . The pseudorapidity density of charged particles produced in the pseudorapidity region |η|<0.5 is 5.31±0.18 and 6.46±0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15<pT<20 GeV/c and |η|<0.8 for events with at least one charged particle in |η|<1 . The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

4
data tables

Invariant charged-particle yield as a function of pT normalised to INEL>0 events.

Ratio of transverse-momentum spectra in INEL>0 events at $\sqrt{s}$ = 13 and 7 TeV.