Energy dependence of $\phi$ meson production at forward rapidity in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 772, 2021.
Inspire Record 1861688 DOI 10.17182/hepdata.110876

The production of $\phi$ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $2.5 < y < 4$. Measurements of the differential cross section ${\rm d}^2\sigma/{\rm d}y {\rm d}p_{\rm T}$ are presented as a function of the transverse momentum ($p_{\rm T}$) at the center-of-mass energies $\sqrt{s}=5.02$, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $\sqrt{s}=5.02$ and 13 TeV are also studied in several rapidity intervals as a function of $p_{\rm T}$, and as a function of rapidity in three $p_{\rm T}$ intervals. A hardening of the $p_{\rm T}$-differential cross section with the collision energy is observed, while, for a given energy, $p_{\rm T}$ spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing $p_{\rm T}$. The new results, complementing the published measurements at $\sqrt{s}=2.76$ and 7 TeV, allow one to establish the energy dependence of $\phi$ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with $p_{\rm T}$ and rapidity at all the energies.

19 data tables

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=5.02$ TeV at forward rapidity in pp collisions.

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=8$ TeV at forward rapidity in pp collisions.

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=13$ TeV at forward rapidity in pp collisions.

More…

Centrality dependence of J/$\psi$ and $\psi$(2S) production and nuclear modification in p-Pb collisions at $\sqrt{s_{\rm NN}} =$ 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 02 (2021) 002, 2021.
Inspire Record 1811102 DOI 10.17182/hepdata.100166

The inclusive production of the J/$\psi$ and $\psi$(2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 8.16$ TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals $-4.46 < y_{\rm cms} < -2.96$ (Pb-going direction) and $2.03 < y_{\rm cms} < 3.53$ (p-going direction), down to zero transverse momentum ($p_{\rm T}$). The J/$\psi$ and $\psi$(2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The $p_{\rm T}$-differential J/$\psi$ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average $\langle p_{\rm T} \rangle$ and $\langle p^{2}_{\rm T} \rangle$ values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states is observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/$\psi$ increases from below unity in peripheral collisions to above unity in central collisions, while for the $\psi$(2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects.

22 data tables

The $p_{\rm T}$-differential inclusive J/$\psi$ cross sections for six centrality classes at backward ($-4.46 < y_{\rm cms} < -2.96$) centre-of-mass rapidity. The first uncertainty is statistical, the second one and the third ones are the uncorrelated and correlated systematic uncertainties, respectively. The third uncertainty is fully correlated over $p_{\rm T}$.

The $p_{\rm T}$-differential inclusive J/$\psi$ cross sections for six centrality classes at forward ($2.03 < y_{\rm cms} < 3.53$) centre-of-mass rapidity. The first uncertainty is statistical, the second one and the third ones are the uncorrelated and correlated systematic uncertainties, respectively. The third uncertainty is fully correlated over $p_{\rm T}$.

The values of $\langle p_{\rm T} \rangle$ and $\langle p^{2}_{\rm T} \rangle$ for six centrality classes at backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) centre-of-mass rapidity. The first uncertainty is statistical, the second one is the systematic uncertainty.

More…