Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 91 (2015) 112012, 2015.
Inspire Record 1328629 DOI 10.17182/hepdata.68515

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent with prior measurements carried out at the LHC by the ATLAS collaboration. The jet charged particle multiplicity rises monotonically with increasing jet $p_{\rm T}$, in qualitative agreement with prior observations at lower energies. The transverse profiles of leading jets are investigated using radial momentum density distributions as well as distributions of the average radius containing 80% ($\langle R_{\rm 80} \rangle$) of the reconstructed jet $p_{\rm T}$. The fragmentation of leading jets with $R=0.4$ using scaled $p_{\rm T}$ spectra of the jet constituents is studied. The measurements are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). The measured radial density distributions and $\langle R_{\rm 80} \rangle$ distributions are well described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.

73 data tables

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

More…

Production of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in proton-proton collisions at $\sqrt{s}=$ 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 75 (2015) 1, 2015.
Inspire Record 1300380 DOI 10.17182/hepdata.66563

The production of the strange and double-strange baryon resonances ($\Sigma(1385)^{\pm}$, $\Xi(1530)^{0}$) has been measured at mid-rapidity ($\left | y \right |<0.5$) in proton-proton collisions at $\sqrt{s}$ = 7 TeV with the ALICE detector at the LHC. Transverse momentum spectra for inelastic collisions are compared to QCD-inspired models, which in general underpredict the data. A search for the $\phi(1860)$ pentaquark, decaying in the $\Xi\pi$ channel, has been carried out but no evidence is seen.

3 data tables

Inelastic baryon yields, d2N/(dydpT), per pT interval per unit rapidity for Sigma(1385)+- in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.

Inelastic baryon yields, d2N/(dydpT), per pT interval per unit rapidity for Xi(1530)0 in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.

Mean pT as function of the mass for particles measured with the ALICE detector in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.


K*(892)^0 and PHI(1020) production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 91 (2015) 024609, 2015.
Inspire Record 1288320 DOI 10.17182/hepdata.66630

The yields of the K*(892)$^{0}$ and $\Phi$(1020) resonances are measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV through their hadronic decays using the ALICE detector. The measurements are performed in multiple centrality intervals at mid-rapidity (|$y$|<0.5) in the transverse-momentum ranges 0.3 < $p_{\rm T}$ < 5 GeV/$c$ for the K*(892)$^{0}$ and 0.5 < $p_{\rm T}$ < 5 GeV/$c$ for the $\Phi$(1020). The yields of K*(892)$^{0}$ are suppressed in central Pb-Pb collisions with respect to pp and peripheral Pb-Pb collisions (perhaps due to rescattering of its decay products in the hadronic medium), while the longer lived $\Phi$(1020) meson is not suppressed. These particles are also used as probes to study the mechanisms of particle production. The shape of the $p_{\rm T}$ distribution of the $\Phi$(1020) meson, but not its yield, is reproduced fairly well by hydrodynamic models for central Pb-Pb collisions. In central Pb-Pb collisions at low and intermediate $p_{\rm T}$, the p/$\Phi$(1020) ratio is flat in $p_{\rm T}$, while the p/$\pi$ and $\Phi$(1020)/$\pi$ ratios show a pronounced increase and have similar shapes to each other. These results indicate that the shapes of the $p_{\rm T}$ distributions of these particles in central Pb-Pb collisions are determined predominantly by the particle masses and radial flow. Finally, $\Phi$(1020) production in Pb-Pb collisions is enhanced, with respect to the yield in pp collisions and the yield of charged pions, by an amount similar to the $\Lambda$ and $\Xi$.

36 data tables

Transverse-momentum distributions of (K*(892)0 + anti-K*(892)0)/2 in Pb-Pb collisions at sqrt(sNN)=2.76 TeV, centrality 0.0-20.0%.

Transverse-momentum distributions of (K*(892)0 + anti-K*(892)0)/2 in Pb-Pb collisions at sqrt(sNN)=2.76 TeV, centrality 20.0-40.0%.

Transverse-momentum distributions of (K*(892)0 + anti-K*(892)0)/2 in Pb-Pb collisions at sqrt(sNN)=2.76 TeV, centrality 40.0-60.0%.

More…

Version 2
Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p--Pb Collisions at sqrt(s_NN) = 5.02 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 728 (2014) 25-38, 2014.
Inspire Record 1244523 DOI 10.17182/hepdata.61786

In this Letter, comprehensive results on ${\rm\pi}^\pm$, K$^\pm$, K$^0_S$, p, $\rm\bar{p}$, $\rm \Lambda$ and $\rm \bar{\Lambda}$ production at mid-rapidity ($0 < y_{\rm cms} < 0.5$) in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, measured by the ALICE detector at the LHC, are reported. The transverse momentum distributions exhibit a hardening as a function of event multiplicity, which is stronger for heavier particles. This behavior is similar to what has been observed in pp and Pb-Pb collisions at the LHC. The measured $p_{\rm T}$ distributions are compared to results at lower energy and with predictions based on QCD-inspired and hydrodynamic models.

49 data tables

pT-differential invariant yield of charged pions in pPb collisions with centre-of-mass energy/nucleon=5.02 TeV.

pT-differential invariant yield of charged pions in pPb collisions with centre-of-mass energy/nucleon=5.02 TeV.

pT-differential invariant yield of charged pions in pPb collisions with centre-of-mass energy/nucleon=5.02 TeV.

More…

Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 727 (2013) 371-380, 2013.
Inspire Record 1241423 DOI 10.17182/hepdata.61692

The average transverse momentum $\langle p_{\rm T}\rangle$ versus the charged-particle multiplicity $N_{\rm ch}$ was measured in p-Pb collisions at a collision energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at collision energies of $\sqrt{s}=0.9$, 2.76, and 7 TeV in the kinematic range $0.15<p_{\rm T}<10.0$ GeV/$c$ and $|\eta|<0.3$ with the ALICE apparatus at the LHC. These data are compared to results in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV at similar charged-particle multiplicities. In pp and p-Pb collisions, a strong increase of $\langle p_{\rm T}\rangle$ with $N_{\rm ch}$ is observed, which is much stronger than that measured in Pb-Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p-Pb and Pb-Pb collisions cannot be described by an incoherent superposition of nucleon-nucleon collisions and pose a challenge to most of the event generators.

5 data tables

The average transverse momentum as a function of multiplicity of charged particles having transverse momentum in the range 0.15-10 GeV/c and |eta| < 0.3 produced from P-P collisions at a centre-of mass energy/nucleon of 0.9 TeV.

The average transverse momentum as a function of multiplicity of charged particles having transverse momentum in the range 0.15-10 GeV/c and |eta| < 0.3 produced from P-P collisions at a centre-of mass energy/nucleon of 2.76 TeV.

The average transverse momentum as a function of multiplicity of charged particles having transverse momentum in the range 0.15-10 GeV/c and |eta| < 0.3 produced from P-P collisions at a centre-of mass energy/nucleon of 7 TeV.

More…

Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at sqrt(s)=0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 72 (2012) 2124, 2012.
Inspire Record 1115186 DOI 10.17182/hepdata.58857

Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.

7 data tables

pp @ 900 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 7000 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 2760 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

More…