Study of flavor dependence of the baryon-to-meson ratio in proton-proton collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.D 108 (2023) 112003, 2023.
Inspire Record 2686623 DOI 10.17182/hepdata.145640

The production cross sections of ${\rm D^0}$ and $\Lambda^+_{\rm c}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity ($|y|<0.5$) by the ALICE Collaboration in proton-proton collisions at a center-of-mass energy $\sqrt{s}=13$ TeV. They are described within uncertainties by perturbative QCD calculations employing the fragmentation fractions of beauty quarks to baryons measured at forward rapidity by the LHCb Collaboration. The ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity, estimated from these measurements, is ${\rm d}\sigma_{\rm b\overline{b}}/{\rm d}y|_{|y|<0.5} = 83.1 \pm 3.5 (\mathrm{stat.}) \pm 5.4(\mathrm{syst.}) ^{+12.3}_{-3.2} (\mathrm{extrap.})\,\mu$b. The baryon-to-meson ratios are computed to investigate the hadronization mechanism of beauty quarks. The non-prompt $\Lambda^+_{\rm c}/{\rm D^0}$ production ratio has a similar trend to the one measured for the promptly produced charmed particles and to the p$/\pi^+$ and $\Lambda/{\rm K^0_S}$ ratios, suggesting a similar baryon-formation mechanism among light, strange, charm, and beauty hadrons. The $p_{\rm T}$-integrated non-prompt $\Lambda_{\rm c}/{\rm D^0}$ ratio is found to be significantly higher than the one measured in e$^+$e$^-$ collisions.

3 data tables

$p_{\mathrm{T}}$-differential D$^{0}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

$p_{\mathrm{T}}$-differential $\Lambda_\mathrm{c}^{+}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

$p_{\mathrm{T}}$-differential non-prompt $\Lambda_\mathrm{c}^{+}$/non-prompt D$^{0}$ ratio in pp collisions at $\sqrt{s}$ = 13 TeV


Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 09 (2013) 049, 2013.
Inspire Record 1241570 DOI 10.17182/hepdata.62319

We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at $\sqrt{s} = 0.9$, $2.76$, and $7$ TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators.

27 data tables

Per-trigger near-side pair yield for pT(trig) > 0.7 GeV and pT(assoc) > 0.4 GeV measured at sqrt(s) = 7 TeV.

Per-trigger near-side pair yield for pT(trig) > 0.7 GeV and pT(assoc) > 0.7 GeV measured at sqrt(s) = 7 TeV.

Per-trigger away-side pair yield for pT(trig) > 0.7 GeV and pT(assoc) > 0.4 GeV measured at sqrt(s) = 7 TeV.

More…

Version 2
Measurement of electrons from beauty hadron decays in pp collisions at sqrt{s} = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 721 (2013) 13-23, 2013.
Inspire Record 1126962 DOI 10.17182/hepdata.61625

The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range $1 < p_{\rm T} < 8$ Gev/$c$ with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy $\sqrt{s} = 7$ TeV using an integrated luminosity of 2.2 nb$^{-1}$. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs.

2 data tables

Double differential cross section for charm and beauty electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).

Double differential cross section for charm and beauty electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).


Measurement of prompt D$^{0}$, $\Lambda_{c}^{+}$, and $\Sigma_{c}^{0,++}$(2455) production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 128 (2022) 012001, 2022.
Inspire Record 1868463 DOI 10.17182/hepdata.127976

The $p_{\rm T}$-differential production cross sections of prompt D$^{0}$, $\Lambda_{\rm c}^{+}$, and $\Sigma_{\rm c}^{0,++}(2455)$ charmed hadrons are measured at midrapidity ($|y| < 0.5$) in pp collisions at $\sqrt{s} = 13$ TeV. This is the first measurement of $\Sigma_{\rm c}^{0,++}$ production in hadronic collisions. Assuming the same production yield for the three $\Sigma_{\rm c}^{0,+,++}$ isospin states, the baryon-to-meson cross section ratios $\Sigma_{\rm c}^{0,+,++}/{\rm D}^{0}$ and $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ are calculated in the transverse momentum ($p_{\rm T}$) intervals $2 < p_{\rm T} < 12$ GeV/$c$ and $1 < p_{\rm T} < 24$ GeV/$c$. Values significantly larger than in e$^{+}$e$^{-}$ collisions are observed, indicating for the first time that baryon enhancement in hadronic collisions also extends to the $\Sigma_{\rm c}$. The feed-down contribution to $\Lambda_{\rm c}^{+}$ production from $\Sigma_{\rm c}^{0,+,++}$ is also reported and is found to be larger than in e$^{+}$e$^{-}$ collisions. The data are compared with predictions from event generators and other phenomenological models, providing a sensitive test of the different charm-hadronisation mechanisms implemented in the models.

7 data tables

$p_\mathrm{T}$-differential cross section of prompt $D^0$ in pp collisions at $\sqrt{s}$ = 13 TeV

$p_\mathrm{T}$-differential cross section of prompt $\Lambda_c^+$ in pp collisions at $\sqrt{s}$ = 13 TeV

$p_\mathrm{T}$-differential cross section of prompt $\Sigma_c^{0,++}$ in pp collisions at $\sqrt{s}$ = 13 TeV

More…

Direct observation of the dead-cone effect in QCD

The ALICE collaboration Acharya, S. ; Acharya, S. ; Adamova, D. ; et al.
Nature 605 (2022) 440-446, 2022.
Inspire Record 1867966 DOI 10.17182/hepdata.130725

In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass $m_{\rm{Q}}$ and energy $E$, within a cone of angular size $m_{\rm{Q}}$/$E$ around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.

1 data table

The $R(\theta)$ variable for charm/inclusive emissions in three bins of $E_{Rad}$: 5-10, 10-20 and 20-35 GeV.


Multiplicity dependence of charged-particle jet production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 82 (2022) 514, 2022.
Inspire Record 2026265 DOI 10.17182/hepdata.130653

The multiplicity dependence of jet production in pp collisions at the centre-of-mass energy of $\sqrt{s} = 13\ \mathrm{TeV}$ is studied for the first time. Jets are reconstructed from charged particles using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R$ varying from $0.2$ to $0.7$. The jets are measured in the pseudorapidity range $|\eta_{\rm jet}|< 0.9-R$ and in the transverse momentum range $5<p_\mathrm{T,jet}^{\rm ch}<140\ \mathrm{GeV}/c$. The multiplicity intervals are categorised by the ALICE forward detector V0. The $p_{\mathrm{T}}$ differential cross section of charged-particle jets are compared to leading order (LO) and next-to-leading order (NLO) perturbative quantum chromodynamics (pQCD) calculations. It is found that the data are better described by the NLO calculation, although the NLO prediction overestimates the jet cross section below $20\ \mathrm{GeV}/c$. The cross section ratios for different $R$ are also measured and compared to model calculations. These measurements provide insights into the angular dependence of jet fragmentation. The jet yield increases with increasing self-normalised charged-particle multiplicity. This increase shows only a weak dependence on jet transverse momentum and resolution parameter at the highest multiplicity. While such behaviour is qualitatively described by the present version of PYTHIA, quantitative description may require implementing new mechanisms for multi-particle production in hadronic collisions.

9 data tables

Inclusive charged-particle jet cross sections in pp collisions at $\sqrt{s}$ = 13 TeV using the anti-kT algorithm for different jet resolution parameters R from 0.2 to 0.7, with UE subtraction. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as solid boxes around the data points.

Ratio of charged-particle jet cross section for resolution parameter R = 0.2 to other radii R = X, with X ranging from 0.3 to 0.7, after UE subtraction. Data are compared with LO (PYTHIA) and NLO (POWHEG+PYTHIA8) predictions as shown in the bottom panels. The systematic uncertainties of the cross section ratios from data are indicated by solid boxes around data points in the upper panel and shaded bands around unity in the mid and lower panels. No uncertainties are shown for theoretical predictions for better visibility.

Charged-particle jet yields in different V0M multiplicity percentile intervals for resolution parameters R varied from 0.2 to 0.7 in pp collisions at s = 13 TeV. Statistical and total systematic uncertainties are shown as vertical error bars and boxes around the data points, respectively.

More…

J/$\psi$ elliptic and triangular flow in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2020) 141, 2020.
Inspire Record 1798507 DOI 10.17182/hepdata.99234

The inclusive J/$\psi$ elliptic ($v_2$) and triangular ($v_3$) flow coefficients measured at forward rapidity (2.5 $<y<$ 4) and the $v_2$ measured at midrapidity ($|y|<$ 0.9) in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the LHC are reported. The entire Pb-Pb data sample collected during Run 2 is employed, amounting to an integrated luminosity of 750 $\mu$b$^{-1}$ at forward rapidity and 93 $\mu$b$^{-1}$ at midrapidity. The results are obtained using the scalar product method and are reported as a function of transverse momentum $p_{\rm T}$ and collision centrality. At midrapidity, the J/$\psi$ $v_2$ is in agreement with the forward rapidity measurement. The centrality averaged results indicate a positive J/$\psi$ $v_3$ with a significance of more than 5$\sigma$ at forward rapidity in the $p_{\rm T}$ range $2<p_{\rm T}<5$ GeV/$c$. The forward rapidity $v_2$, $v_3$, and $v_3$/$v_2$ results at low and intermediate $p_{\rm T}$ ($p_{\rm T} \lesssim 8$ GeV/$c$) exhibit a mass hierarchy when compared to pions and D mesons, while converging into a species-independent curve at higher $p_{\rm T}$. At low and intermediate $p_{\rm T}$, the results could be interpreted in terms of a later thermalization of charm quarks compared to light quarks, while at high $p_{\rm T}$, path-length dependent effects seem to dominate. The J/$\psi$ $v_2$ measurements are further compared to a microscopic transport model calculation. Using a simplified extension of the quark scaling approach involving both light and charm quark flow components, it is shown that the D-meson $v_{\rm n}$ measurements can be described based on those for charged pions and J/$\psi$ flow.

19 data tables

Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 0$-$10.0 %

Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 10$-$30 %

Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 30$-$50 %

More…

Measurement of the production cross section of prompt $\Xi^0_{\rm c}$ baryons at midrapidity in pp collisions at $\sqrt{s}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2021) 159, 2021.
Inspire Record 1863039 DOI 10.17182/hepdata.114189

The transverse momentum ($p_{\rm T}$) differential cross section of the charm-strange baryon $\Xi^0_{\rm c}$ is measured at midrapidity ($|y|<$ 0.5) via its semileptonic decay into ${\rm e^{+}}\Xi^{-}\nu_{\rm e}$ in pp collisions at $\sqrt{s}$ = 5.02 TeV with the ALICE detector at the LHC. The ratio of the $p_{\rm T}$-differential $\Xi^0_{\rm c}$-baryon and ${\rm D^0}$-meson production cross sections is also reported. The measurements are compared with simulations with different tunes of the PYTHIA 8 event generator, with predictions from a statistical hadronisation model (SHM) with a largely augmented set of charm-baryon states beyond the current lists of the Particle Data Group, and with models including hadronisation via quark coalescence. The $p_{\rm T}$-integrated cross section of prompt $\Xi^0_{\rm c}$-baryon production at midrapidity is also reported, which is used to calculate the baryon-to-meson ratio $\Xi^0_{\rm c}/{\rm D^0} = 0.20 \pm 0.04~{\rm (stat.)} ^{+0.08}_{-0.07}~{\rm (syst.)}$. These results provide an additional indication of a modification of the charm fragmentation from $\rm e^+e^-$ and $\rm e^{-}p$ collisions to pp collisions.

6 data tables

$p_{\rm T}-$differential production cross section of prompt $\Xi^{0}_{\rm c}$ baryons in pp collisions at $\sqrt{s} =$ 5.02 TeV for $|y| < 0.5$.

$p_{\rm T}-$differential production cross section of inclusive $\Xi^{0}_{\rm c}$ baryons in pp collisions at $\sqrt{s} =$ 7 TeV for $|y| < 0.5$. The cross section result now is divided by the BR, which was not applied in the previous paper and HEPData.

$\Xi^0_{\rm c}$/${\rm D^0}$ ratio measured in pp collisions at $\sqrt{s}$ = 5.02 TeV for $|y| < 0.5$. The uncertainty of the BR of ${\rm D^0}$ and $\Xi^0_{\rm c}$ are written separately

More…

Elliptic flow of electrons from beauty-hadron decays in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 126 (2021) 162001, 2021.
Inspire Record 1797450 DOI 10.17182/hepdata.102642

The elliptic flow of electrons from beauty hadron decays at midrapidity ($|y|$$<$ 0.8) is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parameterized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, $v_{\rm 2}$. The $v_{\rm 2}$ coefficient of electrons from beauty-hadron decays is measured for the first time in the transverse momentum ($p_{\rm{T}}$) range 1.3-6 GeV/$c$ in the centrality class 30-50%. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length $c\tau \approx$ 500 $\mu$m compared to that of charm hadrons and most of the other background sources. The $v_{\rm 2}$ of electrons from beauty hadron decays at midrapidity is found to be positive with a significance of 3.75$\sigma$. The results provide insights on the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavoured by the measurement at high $p_{\rm{T}}$, but is in agreement with the results at low $p_{\rm{T}}$. Transport models including substantial interactions of beauty quarks with an expanding strongly-interacting medium describe the measurement.

1 data table

$v_{2}$ of electrons from beauty hadron decays as a function of $p_{\rm T}$ in the centrality range 30-50% for $\sqrt{s_{\rm NN}}=5.02 {\rm~TeV}$