This paper presents a study of the inclusive forward J/$\psi$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} = 13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative J/$\psi$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|\eta| < 1$. The J/$\psi$ mesons are reconstructed via their decay into $\mu^+ \mu^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range $-3.7 < \eta < -1.7$, which overlaps with the J/$\psi$ rapidity region. The results show a steeper-than-linear increase of the J/$\psi$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.
Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.
Correlations between event-by-event fluctuations of anisotropic flow harmonics are measured in Pb-Pb collisions at a center-of-mass energy per nucleon pair of 5.02 TeV, as recorded by the ALICE detector at the LHC. This study presents correlations up to the hexagonal flow harmonic, $v_6$, which was measured for the first time. The magnitudes of these higher-order correlations are found to vary as a function of collision centrality and harmonic order. These measurements are compared to viscous hydrodynamic model calculations with EKRT initial conditions and to the iEBE-VISHNU model with TRENTo initial conditions. The observed discrepancies between the data and the model calculations vary depending on the harmonic combinations. Due to the sensitivity of model parameters estimated with Bayesian analyses to these higher-order observables, the results presented in this work provide new and independent constraints on the initial conditions and transport properties in theoretical models used to describe the system created in heavy-ion collisions.
NSC(5,2) vs centrality in Pb-Pb collisions at 5.02 TeV
NSC(5,3) vs centrality in Pb-Pb collisions at 5.02 TeV
NSC(6,2) vs centrality in Pb-Pb collisions at 5.02 TeV
In this letter, we present the first measurement of direct photons at the transverse momentum of $ 1 < p_{\rm T} < 6$ GeV/$c$ at midrapidity $|η| < 0.8$ in inelastic and high-multiplicity proton--proton collisions at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV. The fraction of virtual direct photons in the inclusive virtual photon spectrum is obtained from a fit to the dielectron invariant mass spectrum. In the limit of zero invariant mass, this fraction is equal to the relative contribution of real direct photons in the inclusive real photon spectrum. Contributions from decays of light-flavour neutral mesons are estimated using independent measurements in proton-proton collisions at the same energy and the same event class. For the first time at the LHC energies, a direct-photon signal is observed at low $p_{\rm T}$ in both inelastic and high-multiplicity event classes, with a significance of 3.2$σ$ and 1.9$σ$ in terms of standard deviations, correspondingly. The yield of direct photons in inelastic pp collisions is compared to perturbative QCD calculations. The integrated photon yield is studied as a function of charged-particle multiplicity and is compared to the results from other experiments and theoretical calculations. The results show a significant increase of direct-photon yield with charged-particle multiplicity.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The dielectron cross section in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The direct-photon fraction r in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of transverse momentum for 1 < $p_{\rm T}$ < 6 GeV/$c$. r is the ratio of direct GAMMA to inclusive GAMMA.
The distribution of angular correlations between prompt charm hadrons and primary charged particles in pp collisions is sensitive to the charm-quark hadronisation process. In this letter, charm-baryon correlations are measured for the first time by studying the azimuthal-angle difference between charged particles and prompt $\Lambda_{\rm c}^+$ baryons produced in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, with the ALICE detector. $\Lambda_{\rm c}^+$ baryons are reconstructed at midrapidity ($|y| < 0.5$) in the transverse-momentum interval $3 < p_{\rm T} < 16$ GeV/$c$, and correlated with charged particles with $p_{\rm T} > 0.3$ GeV/$c$ and pseudorapidity $|\eta| < 0.8$. For $3 < p_{\rm T}^{\Lambda_{\rm c}^+,{\rm D}} < 5$ GeV/$c$, the comparison with published measurements of D-meson and charged-particle correlations in the same collision system hints at a larger number of low-momentum particles associated with $\Lambda_{\rm c}^+$-baryon triggers than with D-meson triggers, both in the collinear and opposite directions with respect to the trigger particle. These differences can be quantified by the comparison of the properties of the near- and away-side correlation peaks, and are not reproduced by predictions of various Monte Carlo event generators, generally underpredicting the associated particle yields at $p_{\rm T}^{\rm assoc} < 1$ GeV/$c$. This tension between $\Lambda_{\rm c}^+$-baryon and D-meson associated peak yields could suggest a modified fragmentation of the charm quark, or a different hadronisation process, when a charm baryon is produced in the final state.
Azimuthal-correlation distributions of $\Lambda_\mathrm{c}^{+}$ baryons with associated particles in pp collisions at $\sqrt{s} = 13$ TeV, compared to the average of the azimuthal-correlation distributions of D$^{0}$, D$^{+}$, and D$^{*+}$ mesons with associated particles in the same collision system. The distributions are shown after the baseline subtraction. Charm hadrons are reported for $3 < p_{\rm T} < 5$ GeV/$c$, associated particles for $0.3 < p_{\rm T} < 1$ GeV/$c$. The rapidity range for the D mesons and $\Lambda_\mathrm{c}^{+}$ baryons is $|y^{\rm D,\Lambda_\mathrm{c}^{+}}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D,\Lambda_{c}^{+}}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Azimuthal-correlation distributions of $\Lambda_\mathrm{c}^{+}$ baryons with associated particles, i.e. primary charged particles, in pp collisions at $\sqrt{s} = 13$ TeV, compared to the average of the azimuthal-correlation distributions of D$^{0}$, D$^{+}$, and D$^{*+}$ mesons with associated particles in the same collision system. The distributions are shown after the baseline subtraction. Charm hadrons are reported for $5 < p_{\rm T} < 8$ GeV/$c$, associated particles for $0.3 < p_{\rm T} < 1$ GeV/$c$. The rapidity range for the D mesons and $\Lambda_\mathrm{c}^{+}$ baryons is $|y^{\rm D,\Lambda_\mathrm{c}^{+}}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D,\Lambda_{c}^{+}}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Azimuthal-correlation distributions of $\Lambda_\mathrm{c}^{+}$ baryons with associated particles, i.e. primary charged particles, in pp collisions at $\sqrt{s} = 13$ TeV, compared to the average of the azimuthal-correlation distributions of D$^{0}$, D$^{+}$, and D$^{*+}$ mesons with associated particles in the same collision system. The distributions are shown after the baseline subtraction. Charm hadrons are reported for $8 < p_{\rm T} < 16$ GeV/$c$, associated particles for $p_{\rm T} > 1$ GeV/$c$. The rapidity range for the D mesons and $\Lambda_\mathrm{c}^{+}$ baryons is $|y^{\rm D,\Lambda_\mathrm{c}^{+}}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D,\Lambda_{c}^{+}}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Event-by-event fluctuations of the event-wise mean transverse momentum, $\langle p_{\mathrm{T}}\rangle$, of charged particles produced in proton-proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV, Xe-Xe collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.44 TeV, and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV are studied using the ALICE detector based on the integral correlator $\langle\langle \Delta p_{\rm T}\Delta p_{\rm T}\rangle\rangle $. The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe-Xe and Pb-Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe-Xe and Pb-Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity, $S_0$, of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in pp collisions at $\sqrt{s}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Xe--Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV.
The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}= 13$ TeV at midrapidity ($|y|<0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6
Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 13 TeV, the uncertainty of sigma_{MB} of 1.58% is not included in the systematic error.
The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 13 TeV.
The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of $^{208}$Pb nuclei in the ALICE experiment at the LHC are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron Zero Degree Calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral $^{208}$Pb--$^{208}$Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV. The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17-25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of $^{208}$Pb. The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes $^{206,205,204}$Tl.
Measured cross sections of the emission of a given number of protons k accompanied by at least one neutron i in UPC of Pb nuclei.
Measured cross sections of the emission of a given number of neutrons i accompanied by a single proton in UPC of Pb nuclei.
The ALICE Collaboration presents a new suite of jet substructure measurements in Pb-Pb and pp collisions at a center-of-mass energy per nucleon pair $\sqrt{s}_{\rm NN} = 5.02$ TeV. These measurements provide access to the internal structure of jets via the momentum and angle of their constituents, probing how the quark--gluon plasma modifies jets, an effect known as jet quenching. Jet grooming additionally removes soft wide-angle radiation to enhance perturbative accuracy and reduce experimental uncertainties. We report the groomed and ungroomed jet mass $m_{\rm jet}$ and jet angularities $\lambda_\alpha^\kappa$ using $\kappa=1$ and $\alpha>0$. Charged-particle jets are reconstructed at midrapidity using the anti-$k_\mathrm{T}$ algorithm with resolution parameter $R = 0.2$. A narrowing of the jet mass and angularity distributions in Pb-Pb collisions with respect to pp is observed and is enhanced for groomed results, confirming modification of the jet core. By using consistent jet definitions and kinematic cuts between the mass and angularities for the first time, previous inconsistencies in the interpretation of quenching measurements are resolved, rectifying a hurdle for understanding how jet quenching arises from first principles and highlighting the importance of a well-controlled baseline. These results are compared with a variety of theoretical models of jet quenching, providing constraints on jet energy-loss mechanisms in the quark--gluon plasma.
Jet angularity $\lambda_{\alpha}$ for $\alpha = 1$. $40<p_{\mathrm{T}}^{\mathrm{ch jet}}<60$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
Jet angularity $\lambda_{\alpha}$ for $\alpha = 1.5$. $40<p_{\mathrm{T}}^{\mathrm{ch jet}}<60$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
Jet angularity $\lambda_{\alpha}$ for $\alpha = 2$. $40<p_{\mathrm{T}}^{\mathrm{ch jet}}<60$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
In this Letter, the first evidence of the ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number $A=4$, specifically (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$. In addition, the antiparticle-to-particle ratios for both hypernuclei (${}^4_{\bar{\Lambda}}\overline{\mathrm{H}}$ / ${}^4_{\Lambda}\mathrm{H}$~and ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ / ${}^4_{\Lambda}\mathrm{He}$) are shown, which are sensitive to the baryochemical potential of the strongly-interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb--Pb collisions, collected during the 2018 LHC data-taking at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The yields measured for the average of the charge-conjugated states are found to be $[0.78 \; \pm \; 0.19 \; \mathrm{(stat.)} \; \pm \; 0.17 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{H}$ and $[1.08 \; \pm \; 0.34 \; \mathrm{(stat.)} \; \pm \; 0.20 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{He}$, and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3$\sigma$ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6$\sigma$ with the present measurements. Additionally, the measured (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ masses are compatible with the world-average values within the uncertainties.
average pT-integrated yield of particle and antiparticle of both analyzed (anti)hypernuclei in Pb-Pb collisions in 0-10% V0M centrality class
mass measurement of both analyzed (anti)hypernuclei in Pb-Pb collisions in 0-10% V0M centrality class
antiparticle-to-particle ratio of the analyzed (anti)hypernuclei in Pb-Pb collisions in 0-10% V0M centrality class
ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ}<\theta<50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3d. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15}
Muon multiplicity distribution measured with the ALICE apparatus and obtained for the whole data sample of Run 2 corresponding to a live time of 62.5 days. The data points are grouped in multiplicity intervals with a width of five units ($N_\mu=5-9,~N_\mu=10-14,~...$), and are located at the center of each interval ($N_\mu=7,~N_\mu=12,~...$). The vertical error bars represent the statistical uncertainties.
Muon multiplicity distribution measured with the ALICE apparatus and obtained for the whole data sample of Run 2 corresponding to a live time of 62.5 days. The data are the same as Fig. 3 but each bin corresponds to a single muon multiplicity ($N_\mu=1,2,3,~...$); the distribution starts at $N_\mu=5$. The vertical error bars represent the statistical uncertainties.
Measured muon multiplicity distribution compared with simulations from CORSIKA Monte Carlo generator using QGSJET-II-04 (top), SIBYLL 2.3 (middle), and EPOS-LHC (bottom) as hadronic interaction models for proton and iron primary cosmic rays. Iron points are slightly shifted to the right to avoid overlapping with the data points. The total uncertainties in the MC simulations are given by the vertical bars, while the boxes give the systematic uncertainties of the data and the vertical bars the statistical ones.
The ALICE Collaboration reports measurements of the large relative transverse momentum ($k_{\text{T}}$) component of jet substructure in pp and in central and semicentral Pb$-$Pb collisions at center-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=5.02$ TeV. Enhancement in the yield of such large-$k_{\text{T}}$ emissions in central Pb$-$Pb collisions is predicted to arise from partonic scattering with quasi-particles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti-$k_{\text{T}}$ algorithm with resolution parameter $R=0.2$ in the transverse-momentum interval $60 < p_{\text{T,ch jet}} < 80$$\text{GeV}/c$. The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb$-$Pb and pp collisions shows medium-induced narrowing, corresponding to yield suppression of high-$k_{\text{T}}$ splittings, in contrast to the expectation of yield enhancement due to quasi-particle scattering. The measurements are compared to theoretical model calculations incorporating jet quenching, both with and without quasi-particle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching.
Groomed relative transverse momentum, $k_{\text{T,g}}$, spectra measured in pp collisions. $60 < p_{\text{T,ch jet}}^{\text{}} < 80\:\text{GeV}/c$, Dynamical grooming $a = 1.0$ For the "trk eff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$) denote correlation across bins. For the remaining sources ("unfold"), no correlation information is specified (i.e. $\pm$ is always used). In the publication, the quadrature sum of all sources of systematic uncertainty is reported, neglecting the sign information reported here.
Groomed relative transverse momentum, $k_{\text{T,g}}$, spectra measured in 30--50% Pb-Pb collisions. $60 < p_{\text{T,ch jet}}^{\text{}} < 80\:\text{GeV}/c$, Dynamical grooming $a = 1.0$ For the "trk eff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$) denote correlation across bins. For the remaining sources ("unfold,bkg,non_closure"), no correlation information is specified (i.e. $\pm$ is always used). In the publication, the quadrature sum of all sources of systematic uncertainty is reported, neglecting the sign information reported here.
Groomed relative transverse momentum, $k_{\text{T,g}}$, spectra measured in 0--10% Pb-Pb collisions. $60 < p_{\text{T,ch jet}}^{\text{}} < 80\:\text{GeV}/c$, Dynamical grooming $a = 1.0$ For the "trk eff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$) denote correlation across bins. For the remaining sources ("unfold,bkg,non_closure"), no correlation information is specified (i.e. $\pm$ is always used). In the publication, the quadrature sum of all sources of systematic uncertainty is reported, neglecting the sign information reported here.
The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb$-$Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb$-$Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| <0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb$-$Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.
Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.2$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.
Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.4$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.
Ratio of isolated-photon cross section measured with $R=0.4$ over $R=0.2$ for Pb$-$Pb and pp collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$. Each column for each Pb$-$Pb collisions centrality class and for pp collisions. The last two columns for the NLO pQCD JETPHOX calculations for pp (PDF) and Pb$-$Pb (nPDF) collisions. Data statistical and systematic uncertainties are provided. The theory statiscal (Monte Carlo approach) and PDF uncertainties are provided.
The production of (multi-)strange hadrons is measured at midrapidity in proton--proton collisions at $\sqrt{s} = 13$ TeV as a function of the local charged-particle multiplicity in the pseudorapidity interval ${|\eta|<0.5}$ and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters. The latter provides information on the effective energy, i.e. the energy available for particle production in the collision once subtracted from the centre-of-mass energy. The yields of K$^0_{\rm S}$, $\Lambda+{\bar \Lambda}$, and $\Xi^{-}+\overline{\Xi}^{+}$ per charged-particle increase with the effective energy. In addition, this work exploits a multi-differential approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The results presented in this article provide new insights into the interplay between global properties of the collision, such as the initial available energy in the event, and the locally produced final hadronic state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of strange baryon production with effective energy is observed for fixed charged-particle multiplicity at midrapidity. These results are discussed within the context of existing phenomenological models of hadronisation implemented in different tunes of the PYTHIA 8 event generator.
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the standalone classification (V0M event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the high-local-multiplicity classification (V0M+SPDClusters event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the low-local-multiplicity classification (V0M+SPDClusters event classes).
This study presents the first measurement of the f$_{1}$(1285) resonance using the ALICE detector in inelastic proton-proton collisions at a center-of-mass energy of 13 TeV. The resonance is reconstructed at midrapidity ($|y| <$ 0.5) through the hadronic decay channel f$_{1} (1285) \rightarrow \mathrm{K^{0}_{S} K^{\pm}\pi^{\mp}}$. Key measurements include the determination of its mass, transverse-momentum integrated yield, and average transverse momentum. Additionally, the ratio of the transverse-momentum integrated yield of f$_{1}$(1285) to pion is compared with calculations from the canonical statistical hadronization model. The model calculation, assuming a zero total strangeness content for f$_{1}$(1285), reproduces the data within 1$\sigma$ deviation, shedding light on the quark composition of f$_{1}$(1285).
Mass of f$_{1}$ meson measured in pp collisions at $\sqrt{s}$ = 13 TeV.
$p_{\rm T}$-distributions of f$_{1}$ meson measured in pp collisions at $\sqrt{s}$ = 13 TeV.
The production yields of the orbitally excited charm-strange mesons $\mathrm{D_{s1}(1^{+})(2536)^+}$ and $\mathrm{D_{s2}^{*}(2^{+})(2573)^+}$were measured for the first time in proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV with the ALICE experiment at the LHC. The $\mathrm{D_{s1}^+}$ and $\mathrm{D_{s2}^{*+}}$ mesons were measured at midrapidity ($|y|<0.5$) in minimum-bias and high-multiplicity pp collisions in the transverse-momentum interval $2
$\mathrm{D_{s1}}^{+}$ x BR($\mathrm{D_{s1}}^{+} \rightarrow \mathrm D^{*+}$ $\mathrm K^{0}_{S})$ / $\mathrm{D_{s}^{+}}$ ratio at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV as a function of the average charged particle multiplicity
$\mathrm{D_{s2}}^{*+}$ x BR($\mathrm{D_{s2}}^{*+} \rightarrow \mathrm D^{+}$ $\mathrm K^{0}_{S})$ / $\mathrm{D_{s}^{+}}$ ratio at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV as a function of the average charged particle multiplicity
$\mathrm{D}_{s1}^{+}$ / $\mathrm{D}_{s}^{+}$ ratio at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV BR = (22 $\pm$ 2)%, branching ratio of $\mathrm{D}_{s1}^{+}\rightarrow\mathrm D^{*+} \mathrm K^{0}_{S}$ decay computed from RQM predictions and ratio of the BRs between the two possible final charged states.
We report on the measurement of inclusive, non-prompt, and prompt J/$\psi$-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity ($|y| < 0.9$) in the transverse momentum ranges $p_{\rm T} < 40~\text{GeV}/c$ for the J/$\psi$ and $0.15 < p_{\rm T} < 10$ GeV/$c$ and $|\eta|<0.9$ for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of $L_{\text{int}} = 34~\text{nb}^{-1}$ and $L_{\text{int}} = 6.9~\text{pb}^{-1}$, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of $E = 4$ and $9~\text{GeV}$ in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of $L_{\text{int}} = 0.9~\text{pb}^{-1}$ and $L_{\text{int}} = 8.4~\text{pb}^{-1}$, respectively. The results are presented as associated hadron yields per J/$\psi$ trigger as a function of the azimuthal angle difference between the associated hadrons and J/$\psi$ mesons. The integrated near-side and away-side correlated yields are also extracted as a function of the J/$\psi$ transverse momentum. The measurements are discussed in comparison to PYTHIA calculations.
Near side asociated charged particle yield per trigger in the range $0.15<p_T<1$ GeV/$c$ for inclusive J/$\psi$, as a function of $p_T$, using the MB and EMCal event samples.
Near side asociated charged particle yield per trigger in the range $0.15<p_T<1$ GeV/$c$ for inclusive J/$\psi$, as a function of $p_T$, using the HM event samples.
Near side asociated charged particle yield per trigger in the range $0.15<p_T<1$ GeV/$c$ for prompt J/$\psi$, as a function of $p_T$, using the MB and EMCal event samples.
Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at ${\sqrt{{\textit s}}}=13$~TeV. The correlation functions are measured as a function of the relative azimuthal angle $\Delta\varphi$ and the pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum range $1 < p_{\rm T} < 8$ GeV/$c$. Near-side ($|\Delta\varphi|<1.3$) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation ($|\Delta\eta|<1.8$), while the per-trigger associated near-side yields are extracted for the short-range correlations ($|\Delta\eta|<1.3$). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region ($p_{\rm T} < 3$ GeV/$c$). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems.
Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $1.0 < p_\mathrm{T, assoc} < p_\mathrm{T, trig} < 2.0$ GeV/$c$. The multiplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, trig} < 3.0$ GeV/$c$ and $1.0 < p_\mathrm{T, assoc} < 2.0$ GeV/$c$. The mulitplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, assoc} < p_\mathrm{T, trig} < 3.0$ GeV/$c$. The multiplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
The correlations between event-by-event fluctuations of symmetry planes are measured in Pb$-$Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV recorded by the ALICE detector at the Large Hadron Collider. This analysis is conducted using the Gaussian Estimator technique, which is insensitive to biases from correlations between different flow amplitudes. The study presents, for the first time, the centrality dependence of correlations involving up to five different symmetry planes. The correlation strength varies depending on the harmonic order of the symmetry plane and the collision centrality. Comparisons with measurements from lower energies indicate no significant differences within uncertainties. Additionally, the results are compared with hydrodynamic model calculations. Although the model predictions provide a qualitative explanation of the experimental results, they overestimate the data for some observables. This is particularly true for correlators that are sensitive to the non-linear response of the medium to initial-state anisotropies in the collision system. As these new correlators provide unique information - independent of flow amplitudes - their usage in future model developments can further constrain the properties of the strongly-interacting matter created in ultrarelativistic heavy-ion collisions.
Centrality dependence of $\langle\cos[6(\Psi_3-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of $\langle\cos[4(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of $\langle\cos[8(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
This paper reports the first measurement of the transverse momentum ($p_{\mathrm{T}}$) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at $\sqrt{s}=13$ TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, $2.8<\eta<5.1$ and $-3.7<\eta<-1.7$. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger $p_{\mathrm{T}}$ due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to $p_{\mathrm{T}}=20$ GeV/$c$. The event selection requires at least one charged particle produced in the pseudorapidity interval $|\eta|<1$. The measured $p_{\mathrm{T}}$ distributions, average $p_{\mathrm{T}}$, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the $p_{\mathrm{T}}$-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate $p_{\mathrm{T}}$ ($2
Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $p + \overline{p}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
The production cross sections of $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton$-$lead (p$-$Pb) collisions at the center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. Nuclear modification factors ($R_{\mathrm {pPb}}$) of non-prompt $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ are calculated as a function of the transverse momentum ($p_{\mathrm T}$) to investigate the modification of the momentum spectra measured in p$-$Pb collisions with respect to those measured in proton$-$proton (pp) collisions at the same energy. The $R_{\mathrm {pPb}}$ measurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significant $p_{\mathrm T}$ dependence. The $p_{\mathrm T}$-integrated cross sections and $p_{\mathrm T}$-integrated $R_{\mathrm {pPb}}$ of non-prompt $\mathrm {D^0}$ and $\mathrm {D^+}$ mesons are also computed by extrapolating the visible cross sections down to $p_{\mathrm T}$ = 0. The non-prompt D-meson $R_{\mathrm {pPb}}$ integrated over $p_{\mathrm T}$ is compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt $\mathrm {\Lambda_{c}^{+}/D^{0}}$ and $\mathrm{D^+/D^0}$ production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function of $p_{\mathrm T}$ display a similar trend to that measured for charm hadrons in the same collision system.
Non-prompt $\mathrm{D}^0$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.
Non-prompt $\mathrm{D}^+$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.
Non-prompt $\Lambda_{c}^{+}$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.
The production yields of antideuterons and antiprotons are measured in pp collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV, as a function of transverse momentum ($p_{\rm T}$) and rapidity ($y$), for the first time rapidity-differentially up to $|y|= 0.7$. The measured spectra are used to study the $p_{\rm T}$ and rapidity dependence of the coalescence parameter $B_2$, which quantifies the coalescence probability of antideuterons. The $p_{\rm T}$ and rapidity dependence of the obtained $B_2$ is extrapolated for $p_{\rm T}> 1.7$ GeV/$c$ and $|y|>0.7$ using the phenomenological antideuteron production model implemented in PYTHIA 8.3 as well as a baryon coalescence afterburner model based on EPOS 3. Such measurements are of interest to the astrophysics community, since they can be used for the calculation of the flux of antinuclei from cosmic rays, in combination with coalescence models.
Transverse momentum spectra of antideuterons measured in pp collisions at centre-of-mass per nucleon-nucleon energy of 13 TeV, as shown in Fig. 1 (right panel). Rapidity interval 0 to 0.1.
Transverse momentum spectra of antideuterons measured in pp collisions at centre-of-mass per nucleon-nucleon energy of 13 TeV, as shown in Fig. 1 (right panel). Rapidity interval 0.1 to 0.2.
Transverse momentum spectra of antideuterons measured in pp collisions at centre-of-mass per nucleon-nucleon energy of 13 TeV, as shown in Fig. 1 (right panel). Rapidity interval 0.2 to 0.3.
The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at centre-of-momentum energy of $\sqrt{s}=13$ TeV collected during the LHC Run 2 data-taking period. The measurement is performed by combining the measurements of the electromagnetic calorimeter EMCal and the central tracking detectors ITS and TPC, covering a pseudorapidity range of $|\eta^{\gamma}|<0.67$ and a transverse momentum range of $7
Differential cross section of isolated photons measured in pp collisions at 13 TeV.
pQCD NLO calculations with JETPHOX of the isolated-photon cross section as a function of $p_\mathrm{T}^{\gamma}$. The calculations were obtained by choosing factorisation, normalisation, and fragmentation scales equal to the photon transverse momentum ($\mu_{f}=\mu_{R}=\mu_{F}=p_\mathrm{T}^{\gamma}$). The parton distribution function used in the calculations is NNPDF4.0, and the fragmentation function is BFG II.
Ratio of isolated-photon cross sections measured in pp collisions at $\sqrt{s}=$13 TeV over the previous ALICE measurement at $\sqrt{s}=$7 TeV.
Measurements of (anti)deuteron and (anti)$^3$He production in the rapidity range $ |y| < $ 0.5 as a function of the transverse momentum and event multiplicity in Xe$-$Xe collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The coalescence parameters $B_2$ and $B_3$ are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)$^3$He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe$-$Xe collisions and shows features similar to those already observed in Pb$-$Pb collisions, i.e., the mass ordering at low transverse momentum and the meson$-$baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe$-$Xe collisions. The extracted chemical freeze-out temperature $T_{\rm chem}$ = (154.2 $\pm$ 1.1) MeV in Xe$-$Xe collisions is similar to that observed in Pb$-$Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations.
Transverse momentum spectra of 3He nuclei measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (right panel).
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 0 to 10 percent.
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 10 to 20 percent.
This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons $\Xi^-$ and $\overline{\Xi}^+$ and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p$-$Pb, and Pb$-$Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}=5.02\ \mathrm{TeV}$. The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data.
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in pp collisions at $\sqrt{s} = 5.02$ TeV
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV
First measurements of hadron(h)$-\Lambda$ azimuthal angular correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated $\Lambda$ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated $\Lambda$ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle $p_{\rm T}$ and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the $\phi(1020)$ meson are also made. The final results indicate that strangeness production in the highest multiplicity p$-$Pb collisions is enhanced relative to low multiplicity collisions in both the jet-like regions and the underlying event. The production of $\Lambda$ relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 0-20% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 20-50% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 50-80% multiplicity class p-Pb collisions
The first measurement of $_{\Lambda}^{3}\mathrm{H}$ and $^3_ {\overline{\Lambda}}\overline{\mathrm{H}}$ differential production with respect to transverse momentum and centrality in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$~TeV is presented. The $_{\Lambda}^{3}\mathrm{H}$ has been reconstructed via its two-charged-body decay channel, i.e., $_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}$. A Blast-Wave model fit of the $p_{\rm T}$-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the $_{\Lambda}^{3}\mathrm{H}$ kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of $_{\Lambda}^{3}\mathrm{H}$ and $^3\mathrm{He}$ is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements.
Transverse momentum distributions of (anti)hypertriton in 0-10% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 10-30% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 30-50% V0M centrality class
A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson ${\rm K^0_S}$ and the double-strange baryon $\Xi^{\pm}$ is measured, in each event, in the azimuthal direction of the highest-$p_{\rm T}$ particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=13$ TeV using the ALICE detector at the LHC. The per-trigger yields of ${\rm K^0_S}$ and $\Xi^{\pm}$ are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading $\Xi^{\pm}$/${\rm K^0_S}$ yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of $\Xi^{\pm}$ with respect to ${\rm K^0_S}$ is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$ per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$.
Yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $-1.2<\Delta\eta<1.2$ and $-\pi/2<\Delta\varphi<3/2\pi$.
Transverse-to-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $0.86<|\Delta\eta|<1.2$ and $0.96<\Delta\varphi<1.8$.
Toward-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $|\Delta\eta|<0.86$ and $|\Delta\varphi|<1.1$.
The total charm-quark production cross section per unit of rapidity $\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y$, and the fragmentation fractions of charm quarks to different charm-hadron species $f(\mathrm{c}\rightarrow {\rm h_{c}})$, are measured for the first time in p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at midrapidity ($-0.96
The $p_\mathrm{T}$-integrated rapidity-differential cross sections for all measured charm-hadron species at midrapidity in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
The fragmentation fractions $f(\mathrm{c}\rightarrow\mathrm{h}_{\mathrm{c}})$ of charm hadrons in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
The total $\mathrm{c\overline{c}}$ production cross section at midrapidity in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
This Letter presents the first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced $\rho^0$ mesons. The $\rho^0$ mesons are reconstructed through their decay into pion pairs. The measured anisotropy corresponds to the amplitude of the $\cos(2\phi)$ modulation, where $\phi$ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb$-$Pb collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the $\cos(2\phi)$ modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations describe the measured $\cos(2\phi)$ anisotropy and its impact-parameter dependence as the result of a quantum interference effect at the femtometer scale, arising from the ambiguity regarding which of the nuclei is the photon source in the interaction.
Amplitudes of the $\cos(2\phi)$ modulation of the $ρ^0$ yield in ultra-peripheral Pb--Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV in all neutron classes.
The transverse momentum ($p_{\rm T}$) differential production cross section of the promptly produced charm-strange baryon $\Xi_{\rm c}^{0}$ (and its charge conjugate $\overline{\Xi_{\rm c}^{0}}$) is measured at midrapidity via its hadronic decay into ${\rm \pi^{+}}\Xi^{-}$ in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector at the LHC. The $\Xi_{\rm c}^{0}$ nuclear modification factor ($R_{\rm pPb}$), calculated from the cross sections in pp and p$-$Pb collisions, is presented and compared with the $R_{\rm pPb}$ of $\Lambda_{\rm c}^{+}$ baryons. The ratios between the $p_{\rm T}$-differential production cross section of $\Xi_{\rm c}^{0}$ baryons and those of $\mathrm {D^0}$ mesons and $\Lambda_{\rm c}^{+}$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt $\Xi^0_{\rm c}$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p$-$Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The $p_{\rm T}$-integrated cross section of prompt $\Xi^0_{\rm c}$-baryon production at midrapidity extrapolated down to $p_{\rm T}$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p$-$Pb collisions at midrapidity.
Prompt $\Xi_\mathrm{c}^0$ productions cross-section as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
$\Xi_\mathrm{c}^0~R_\mathrm{pPb}$ as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
$\Xi_\mathrm{c}^0/\mathrm{D}^0$ ratio as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron ($\phi(1020)$ meson). Measuring h$-\phi$ correlations at midrapidity in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolutions of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jets are studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the h$-\phi$ correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h$-\phi$ and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the $\phi/\mathrm{h}$ ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total $\phi(1020)$ yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event.
Pet-trigger h--$\phi$ and h--h pair yields within the near and away-side jet peaks as a function of charged particle multiplicity in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV in the pseudorapidity region $|\eta|<0.8$. Pairs consist of a trigger hadron in the range $4.0 < p_{\mathrm{T, trig}} < 8.0 \mathrm{~GeV}/c$ and an associated $\phi$(1020) (h) in the range $1.5 < p_{\mathrm{T, assoc}} < 2.5 \mathrm{~GeV}/c$.
Pet-trigger h--$\phi$ and h--h pair yields within the near and away-side jet peaks as a function of charged particle multiplicity in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV in the pseudorapidity region $|\eta|<0.8$. Pairs consist of a trigger hadron in the range $4.0 < p_{\mathrm{T, trig}} < 8.0 \mathrm{~GeV}/c$ and an associated $\phi$(1020) (h) in the range $2.5 < p_{\mathrm{T, assoc}} < 4.0 \mathrm{~GeV}/c$.
Pairwise (h--$\phi$)/(h--h) ratio vs $\langle N_{\mathrm{ch}} \rangle$ for the lower associated momentum range, $1.5 < p_{\mathrm{T, assoc}} < 2.5 \mathrm{~GeV}/c$ in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV in the pseudorapidity region $|\eta|<0.8$.
The inclusive production of the charm-strange baryon $\Omega^{0}_{\rm c}$ is measured for the first time via its semileptonic decay into $\Omega^{-}\rm e^{+}\nu_{e}$ at midrapidity ($|y|<0.8$) in proton$-$proton (pp) collisions at the centre-of-mass energy $\sqrt{s}=13$ TeV with the ALICE detector at the LHC. The transverse momentum ($p_{\rm T}$) differential cross section multiplied by the branching ratio is presented in the interval $2
The $p_{\rm T}$-differential production cross sections of inclusive $\Omega^0_{\rm c}$ baryons multiplied by the branching ratios (BR) into $\Omega^{-}{\rm e}^{+}\nu_{\rm e}$ in pp collisions at $\sqrt{s} =$ 13 TeV for $|y| < 0.8$.
$p_{\rm T}$-differential branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\rm e}^{+}\nu_{\rm e})/{\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\pi}^{+})$.
Comparison of $p_{\rm T}$-independent branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\rm e}^{+}\nu_{\rm e})/{\rm BR}(\Omega^0_{\rm c}\rightarrow\Omega^{-}{\pi}^{+})$ between experiments and theoretical calculations.
Measurements of the $p_{\rm T}$-dependent flow vector fluctuations in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the $p_{\rm T}$-dependent flow vector fluctuations at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ with two-particle correlations. Significant $p_{\rm T}$-dependent fluctuations of the $\vec{V}_{2}$ flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to $\sim$15% being present in the 5% most central collisions. In parallel, no evidence of significant $p_{\rm T}$-dependent fluctuations of $\vec{V}_{3}$ or $\vec{V}_{4}$ is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than $5\sigma$ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high $p_{\rm T}$, which might be biased by $p_{\rm T}$-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma properties, and the dynamic evolution of the created system.
The ratio $v_{2}{2}/v_2[2]$ as a function of $p_{\rm T}$ in different centrality intervals
The ratio $v_{3}{2}/v_3[2]$ as a function of $p_{\rm T}$ in different centrality intervals
The ratio $v_{4}{2}/v_4[2]$ as a function of $p_{\rm T}$ in different centrality intervals
The $p_{\rm T}$-differential production cross sections of non-prompt ${\rm D^0}$, ${\rm D^+}$, and ${\rm D_s^+}$ mesons originating from beauty-hadron decays are measured in proton$-$proton collisions at a centre-of-mass energy $\sqrt{s}=13$ TeV. The measurements are performed at midrapidity, $|y| < 0.5$, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons, $f_{\rm{s}}/(f_{\rm{u}} + f_{\rm{d}})$, is found to be $0.114 \pm 0.016~{\rm (stat.)} \pm 0.006~{\rm (syst.)} \pm 0.003~{\rm (BR)} \pm 0.003~{\rm (extrap.)}$. This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at $\sqrt{s} = 5.02$ and 13 TeV, showing a hardening of the non-prompt D-meson $p_{\rm T}$-differential production cross section at higher $\sqrt{s}$. Finally, the ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, and $\Lambda_{\rm c}^+$ hadron measurements, obtaining ${\rm d}\sigma/{\rm d}y = 75.2\pm 3.2~(\mathrm{stat.}) \pm 5.2~(\mathrm{syst.})^{+12.3}_{-3.2} ~(\mathrm{extrap.})\text{ } \rm \mu b \;.$
$p_{\mathrm{T}}$-differential non-prompt $\mathrm{D}^{0}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{0}\rightarrow\mathrm{K}^-\pi^+$: $(3.95 \pm 0.03)\%$. Global relative uncertainty on BR: $0.8\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential non-prompt $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}\rightarrow\mathrm{K}^-\pi^+\pi^+$: $(9.38 \pm 0.16)\%$. Global relative uncertainty on BR: $1.7\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}_\mathrm{s}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}_\mathrm{s}\rightarrow\phi\pi^+\rightarrow\mathrm{K}^+\mathrm{K}^-\pi^+$: $(2.22 \pm 0.06)\%$. Global relative uncertainty on BR: $2.7\%$ Global relative uncertainty on luminosity: $1.6\%$
The first measurements of dielectron production at midrapidity ($|\eta_{c}|<0.8$) in proton-proton and proton-lead collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass $m_{\rm{ee}}$ and the pair transverse momentum $p_{\rm{T,ee}}$ in the ranges $m_{\rm{ee}}$ < 3.5 GeV/$c^{2}$ and $p_{\rm{T,ee}}$ < 8.0 GeV/$c^{2}$, in both collision systems. In proton-proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at $\sqrt{s}$ = 7 and 13 TeV. The slope of the $\sqrt{s}$ dependence of the three measurements is described by FONLL calculations. The dielectron cross section measured in proton-lead collisions is in agreement, within the current precision, with the expected dielectron production without any nuclear matter effects for $\rm{e}^{+}\rm{e}^{-}$ pairs from open heavy-flavor hadron decays. For the first time at LHC energies, the dielectron production in proton-lead and proton-proton collisions are directly compared at the same $\sqrt{s_{\rm{NN}}}$ via the dielectron nuclear modification factor $R_{\rm{pPb}}$. The measurements are compared to model calculations including cold nuclear matter effects, or additional sources of dielectrons from thermal radiation.
Charm production cross section at midrapidity
The first measurements of dielectron production at midrapidity ($|\eta_{c}|<0.8$) in proton-proton and proton-lead collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass $m_{\rm{ee}}$ and the pair transverse momentum $p_{\rm{T,ee}}$ in the ranges $m_{\rm{ee}}$ < 3.5 GeV/$c^{2}$ and $p_{\rm{T,ee}}$ < 8.0 GeV/$c^{2}$, in both collision systems. In proton-proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at $\sqrt{s}$ = 7 and 13 TeV. The slope of the $\sqrt{s}$ dependence of the three measurements is described by FONLL calculations. The dielectron cross section measured in proton-lead collisions is in agreement, within the current precision, with the expected dielectron production without any nuclear matter effects for $\rm{e}^{+}\rm{e}^{-}$ pairs from open heavy-flavor hadron decays. For the first time at LHC energies, the dielectron production in proton-lead and proton-proton collisions are directly compared at the same $\sqrt{s_{\rm{NN}}}$ via the dielectron nuclear modification factor $R_{\rm{pPb}}$. The measurements are compared to model calculations including cold nuclear matter effects, or additional sources of dielectrons from thermal radiation.
Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 5.02 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.
Inclusive $e^+e^-$ cross section in p-Pb collisions at $\sqrt{s}$ = 5.02 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.
Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 5.02 TeV as a function of $p_{\rm T,ee}$ for $0.5 < m_{\rm ee} < 1.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval $-1.07 < y_{\rm cms} < 0.14$ and transverse momentum interval 2 $< p_{\rm T} <$ 16 GeV/$c$. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the $p_{\rm T}$ spectra measured for different multiplicity classes with those measured in pp collisions ($Q_{\rm pPb}$) and in peripheral p-Pb collisions ($Q_{\rm CP}$). The $Q_{\rm pPb}$ results obtained are consistent with unity within uncertainties in the measured $p_{\rm T}$ interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions.
$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions
$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 0--20\% centrality
$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 20--40\% centrality
The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ in pp collisions at $\sqrt{s}$ = 8 TeV was measured using Run 1 data collected by the ALICE collaboration at the LHC. The $p_{\rm{T}}$-differential yields d$^{\rm 2}N$/d$y$d$p_{\rm{T}}$ in the range $0 < p_{\rm{T}} < 20$ GeV/$c$ for $\rm{K}^{*0}$ and $0.4 < p_{\rm{T}} < 16$ GeV/$c$ for $\phi$ have been measured at midrapidity, $|y| < 0.5$. Moreover, improved measurements of the $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ at $\sqrt{s} = 7$TeV are presented. The collision energy dependence of $p_{\rm{T}}$ distributions, $p_{\rm{T}}$-integrated yields and particle ratios in inelastic pp collisions are examined. The results are also compared with different collision systems. The values of the particle ratios are found to be similar to those measured at other LHC energies. In pp collisions a hardening of the particle spectra is observed with increasing energy, but at the same time it is also observed that the relative particle abundances are independent of the collision energy. The $p_{\rm{T}}$-differential yields of $\rm{K}^{*0}$ and $\phi$ in pp collisions at $\sqrt{s} = 8$ TeV are compared with the expectations of different Monte Carlo event generators.
The differential invariant yield as a function of transverse momentum ($p_\mathrm{T}$) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0-10%), semi-central (30-50%) and peripheral (60-80%) lead-lead (Pb-Pb) collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\text{ TeV}$ in the $p_{\mathrm{T}}$ intervals 0.5-26 GeV/$c$ (0-10% and 30-50%) and 0.5-10 GeV/$c$ (60-80%). The production cross section in proton-proton (pp) collisions at $\sqrt{s}=5.02$ TeV was measured as well in $0.5
HFe cross section in pp
HFe cross section in Pb-Pb, 0-10 centrality
HFe cross section in Pb-Pb, 30-50 centrality
The elliptic flow ($v_{2}$) of (anti-)$^{3}$He is measured in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV in the transverse-momentum ($p_{\rm{T}}$) range of 2-6 GeV/$c$ for the centrality classes 0-20%, 20-40%, and 40-60% using the event-plane method. This measurement is compared to that of pions, kaons, and protons at the same center-of-mass energy. A clear mass ordering is observed at low $p_{\rm{T}}$, as expected from relativistic hydrodynamics. The violation of the scaling of $v_{2}$ with the number of constituent quarks at low $p_{\rm{T}}$, already observed for identified hadrons and deuterons at LHC energies, is confirmed also for (anti-)$^{3}$He. The elliptic flow of (anti-)$^{3}$He is underestimated by the Blast-Wave model and overestimated by a simple coalescence approach based on nucleon scaling. The elliptic flow of (anti-)$^{3}$He measured in the centrality classes 0-20% and 20-40% is well described by a more sophisticated coalescence model where the phase-space distributions of protons and neutrons are generated using the iEBE-VISHNU hybrid model with AMPT initial conditions.
Event-plane resolution $R_{\Psi_{2}}$ of the second harmonic as a function of the collision centrality.
Elliptic flow ($v_{2}$) of (anti-)$^{3}$He measured in Pb-Pb collisions at \sqrt{s_{\mathrm{NN}}} = 5.02 TeV for the centrality classes 0--20$\%$, 20--40$\%$, and 40--60$\%$. The statistical uncertainties are shown as vertical bars, systematic uncertainties as boxes.
Elliptic flow ($v_{2}$) of (anti-)$^{3}$He measured in Pb-Pb collisions at \sqrt{s_{\mathrm{NN}}} = 5.02 TeV for the centrality classes 0--20$\%$, 20--40$\%$, and 40--60$\%$. The statistical uncertainties are shown as vertical bars, systematic uncertainties as boxes.
Mid-rapidity production of $\pi^{\pm}$, $\rm{K}^{\pm}$ and ($\bar{\rm{p}}$)p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum ($p_{\rm{T}}$) range from hundreds of MeV/$c$ up to 20 GeV/$c$. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0$-$90%. The comparison of the $p_{\rm{T}}$-integrated particle ratios, i.e. proton-to-pion (p/$\pi$) and kaon-to-pion (K/$\pi$) ratios, with similar measurements in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV show no significant energy dependence. Blast-wave fits of the $p_{\rm{T}}$ spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/$\pi$, K/$\pi$) as a function of $p_{\rm{T}}$ show pronounced maxima at $p_{\rm{T}}$ $\approx$ 3 GeV/$c$ in central Pb-Pb collisions. At high $p_{\rm{T}}$, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high $p_{\rm{T}}$ and compatible with measurements at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in pp collisions at $\sqrt{s}$ = 5.02 TeV.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
The inclusive J/$\psi$ production in Pb-Pb collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, measured with the ALICE detector at the CERN LHC, is reported. The J/$\psi$ meson is reconstructed via the dimuon decay channel at forward rapidity ($2.5
Transverse momentum dependence (in 0-90% centrality class) of the inclusive J/$\psi$ $R_{\rm AA}$. The first uncertainty is statistical, the second is the uncorrelated systematic, while the third one is a $p_{\rm T}$-correlated systematic uncertainty.
The minimum and maximum variations for the $R_{\rm AA}$ of prompt J/$\psi$ with respect to the $R_{\rm AA}$ values of inclusive J/$\psi$ reported in Table 1. The variations correspond to two extreme hypotheses on the unknown contribution of non-prompt J/$\psi$.
Transverse momentum dependence (in 0-90% centrality class) of the ratio of the inclusive J/$\psi$ $R_{\rm AA}$ at $\sqrt{s_{NN}}$= 5.02 and 2.76 TeV. The first uncertainty is statistical, the second is the uncorrelated systematic, while the third one is a $p_{\rm T}$-correlated systematic uncertainty.
The global polarization of the $\Lambda$ and $\overline\Lambda$ hyperons is measured for Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 and 5.02 TeV recorded with the ALICE at the LHC. The results are reported differentially as a function of collision centrality and hyperon's transverse momentum ($p_{\rm{T}}$) for the range of centrality 5-50%, $0.5 < p_{\rm{T}} <5$ GeV/$c$, and rapidity $|y|<0.5$. The hyperon global polarization averaged for Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 and 5.02 TeV is found to be consistent with zero, $\langle P_{\rm{H}}\rangle$ (%) $\approx$ - 0.01 $\pm$ 0.05 (stat.) $\pm$ 0.03 (syst.) in the collision centrality range 15-50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at RHIC, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%.
The correction $R_{\mathrm{SP}}^{(1)}$ for finite resolution of the spectator plane angle $\Psi_{\mathrm{SP}}$ as a function of collision centrality for LHC10h data set.
The correction $R_{\mathrm{SP}}^{(1)}$ for finite resolution of the spectator plane angle $\Psi_{\mathrm{SP}}$ as a function of collision centrality for LHC10h data set.
The correction $R_{\mathrm{SP}}^{(1)}$ for finite resolution of the spectator plane angle $\Psi_{\mathrm{SP}}$ as a function of collision centrality for LHC11h data set.
The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.
The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($\ |y\ | < 0.5$) are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of $\rm{K}^{0}_{S}$, $\Lambda$, $\Xi$, and $\Omega$ increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.
$K^{0}_{S}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.
$K^{0}_{S}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.
$\Lambda+\bar{\Lambda}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.
An improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the d$N$/d($ct$) spectrum. The measured value, $\tau$ = 242$^{+34}_{-38}$ (stat.) $\pm$ 17 (syst.) ps, is compatible with all the available theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle.
(Hypertriton + Anti-Hypertriton)dN/d(ct) distribution.
The first measurement of the $\Upsilon(1{\rm S})$ elliptic flow coefficient ($v_2$) is performed at forward rapidity (2.5 $<$ $y$ $<$ 4) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The results are obtained with the scalar product method and are reported as a function of transverse momentum ($p_{\rm{T}}$) up to 15 GeV/$c$ in the 5-60% centrality interval. The measured $\Upsilon(1{\rm S})$ $v_2$ is consistent with zero and with the small positive values predicted by transport models within uncertainties. The $v_2$ coefficient in 2 $<$ $p_{\rm T}$ $<$ 15 GeV/$c$ is lower than that of inclusive J/$\psi$ mesons in the same $p_{\rm{T}}$ interval by 2.6 standard deviations. These results, combined with earlier suppression measurements, are in agreement with a scenario in which the $\Upsilon$(1S) production in Pb-Pb collisions at LHC energies is dominated by dissociation limited to the early stage of the collision whereas in the J/$\psi$ case there is substantial experimental evidence of an additional regeneration component.
The J/$\psi$ $v_2$ coefficient as a function of $p_{\rm T}$ in 5-60% centrality interval in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
The $\Upsilon$(1S) $v_2$ coefficient as a function of $p_{\rm T}$ in 5-60% centrality interval in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
The J/$\psi$ $v_2$ coefficient in three centrality intervals integrated over the transverse momentum range 2~$<$~$p_{\rm T}$~$<$~15 GeV/$c$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
The measurement of the production of prompt D$^0$, D$^+$, D$^{*+}$, and D$^+_s$ mesons in proton$-$lead (p$-$Pb) collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV, with an integrated luminosity of $292\pm 11$ $\mu$b$^{-1}$, are reported. Differential production cross sections are measured at mid-rapidity ($-0.96
$p_{\rm{T}}$ differential cross section of prompt D0 mesons obtained from the analysis without vertexing reconstruction in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}~=~5.02~TeV}$.
$p_{\rm{T}}$ differential cross section of inclusive D0 mesons from the analysis without vertexing reconstruction in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}~=~5.02~TeV}$.
$p_{\rm{T}}$ differential cross section of inclusive D0 mesons from the analysis without vertexing reconstruction in pp collisions at $\mathbf{\sqrt{{\textit s}}~=~5.02~TeV}$ multiplied by A=208.
The measurement of the deuteron and anti-deuteron production in the rapidity range $-1 < y < 0$ as a function of transverse momentum and event multiplicity in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss $\rm{d}E/\rm{d}x$ and via their time-of-flight. Their production in p-Pb collisions is compared to pp and Pb-Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb-Pb collisions at high multiplicities. The mean transverse momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and $\Lambda$ particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p-Pb collisions. In addition, the production of the rare $^{3}{\rm{He}}$ and $^{3}\bar{\rm He}$ nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window $-1 < y < 0$ and the $p_{\rm{T}}$-integrated yield d$N$/d$y$ is extracted. It is found that the yields of protons, deuterons, and $^{3}{\rm{He}}$, normalised by the spin degeneracy factor, follow an exponential decrease with mass number.
Transverse momentum distributions of deuterons in the 0-10% V0A multiplicity class
Transverse momentum distributions of deuterons in the 10-20% V0A multiplicity class
Transverse momentum distributions of deuterons in the 20-40% V0A multiplicity class
The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at a centre-of-momentum energy of $\sqrt{s}=$ 7 TeV. The measurement is performed with the electromagnetic calorimeter EMCal and the central tracking detectors, covering a range of $|\eta|<0.27$ in pseudorapidity and a transverse momentum range of $ 10 < p_{\rm T}^{\gamma} < $ 60 GeV/$c$. The result extends the $p_{\rm T}$ coverage of previously published results of the ATLAS and CMS experiments at the same collision energy to smaller $p_{\rm T}$. The measurement is compared to next-to-leading order perturbative QCD calculations and to the results from the ATLAS and CMS experiments. All measurements and theory predictions are in agreement with each other.
Double $p_{T}$-differential production cross section of isolated photons in pp collisions at $\sqrt{s}$=7 TeV in the rapidity interval -0.27<$\eta$<0.27.
Double differential $p_\mathrm{T}^{\gamma}$ cross section of isolated photons in pp collisions at $\sqrt{s}=7~\mathrm{TeV}$ in the rapidity interval $-0.27< \eta < 0.27$.
pQCD NLO calculations with JETPHOX of the isolated-photon cross section as a function of $p_\mathrm{T}^{\gamma}$. The calculations were obtained by choosing factorisation, normalisation, and fragmentation scales equal to the photon transverse momentum ($\mu_{f}=\mu_{R}=\mu_{F}=p_\mathrm{T}^{\gamma}$). The parton distribution function used in the calculations is CTEQ14, and the fragmentation function is BFG II.