Two-pion Bose-Einstein correlations in pp collisions at sqrt(s)=900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U. ; et al.
Phys.Rev.D 82 (2010) 052001, 2010.
Inspire Record 860477 DOI 10.17182/hepdata.55128

We report on the measurement of two-pion correlation functions from pp collisions at $\sqrt{s}=900$ GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the HBT radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at RHIC and at Tevatron, is not manifest in our data.

36 data tables

Two-particle correlation functions for like-sign and unlike sign pion pairs.

Two-particle correlation functions for like-sign and unlike sign pion pairs.

Two-particle correlation functions for like-sign and unlike sign pion pairs.

More…

Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at sqrt(s)=0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 72 (2012) 2124, 2012.
Inspire Record 1115186 DOI 10.17182/hepdata.58857

Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.

7 data tables

pp @ 900 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 7000 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 2760 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

More…

Underlying Event measurements in pp collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE experiment at the LHC

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 116, 2012.
Inspire Record 1080735 DOI 10.17182/hepdata.58863

We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.

23 data tables

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 7000 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.5 GeV. The data is shown for the three azimuthal regions.

More…

Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Rev.Lett. 108 (2012) 092301, 2012.
Inspire Record 930312 DOI 10.17182/hepdata.58113

The yield of charged particles associated with high-$p_{\rm T}$ trigger particles ($8 < p_{\rm T} < 15$ GeV/$c$) is measured with the ALICE detector in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta $p_{\rm T}> 3$ GeV/$c$ on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.

6 data tables

The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the central region.

The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the peripheral region.

The ratio of away-side yields in Lead-Lead/Proton-Proton collisions in the central region.

More…

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 11 (2018) 013, 2018.
Inspire Record 1657384 DOI 10.17182/hepdata.86210

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For central collisions, the $p_{\rm T}$ spectra are suppressed by more than a factor of 7 around 6-7 GeV/$c$ with a significant reduction in suppression towards higher momenta up to 30 GeV/$c$. The nuclear modification factor $R_{\rm pPb}$, constructed from the pp and p-Pb spectra measured at the same collision energy, is consistent with unity above 8 GeV/$c$. While the spectra in both pp and Pb-Pb collisions are substantially harder at $\sqrt{s_{\rm NN}} = 5.02$ TeV compared to 2.76 TeV, the nuclear modification factors show no significant collision energy dependence. The obtained results should provide further constraints on the parton energy loss calculations to determine the transport properties of the hot and dense QCD matter.

9 data tables

Transverse momentum spectra of charged particles in PbPb collisions in nine centrality classes.

Transverse momentum spectra of charged particles in PbPb collisions in nine centrality classes.

Transverse momentum spectra of charged particles in pPb collisions.

More…

Jet fragmentation transverse momentum measurements from di-hadron correlations in $\sqrt{s}$ = 7 TeV pp and $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV p-Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 03 (2019) 169, 2019.
Inspire Record 1704923 DOI 10.17182/hepdata.89304

The transverse structure of jets was studied via jet fragmentation transverse momentum ($j_{\rm{T}}$) distributions, obtained using two-particle correlations in proton-proton and proton-lead collisions, measured with the ALICE experiment at the LHC. The highest transverse momentum particle in each event is used as the trigger particle and the region $3 < p_{\rm{Tt}} < 15$ GeV/$c$ is explored in this study. The measured distributions show a clear narrow Gaussian component and a wide non-Gaussian one. Based on Pythia simulations, the narrow component can be related to non-perturbative hadronization and the wide component to quantum chromodynamical splitting. The width of the narrow component shows a weak dependence on the transverse momentum of the trigger particle, in agreement with the expectation of universality of the hadronization process. On the other hand, the width of the wide component shows a rising trend suggesting increased branching for higher transverse momentum. The results obtained in pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV are compatible within uncertainties and hence no significant cold nuclear matter effects are observed. The results are compared to previous measurements from CCOR and PHENIX as well as to Pythia 8 and Herwig 7 simulations.

24 data tables

trigger particle momentum dependence of observables RMS for narrow component in p-p collisions at 7 TeV with 0.2<xlong<0.4.

trigger particle momentum dependence of observables RMS for narrow component in p-p collisions at 7 TeV with 0.4<xlong<0.6.

trigger particle momentum dependence of observables RMS for narrow component in p-p collisions at 7 TeV with 0.6<xlong<1.0.

More…

Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.C 101 (2020) 044907, 2020.
Inspire Record 1759506 DOI 10.17182/hepdata.104923

Mid-rapidity production of $\pi^{\pm}$, $\rm{K}^{\pm}$ and ($\bar{\rm{p}}$)p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum ($p_{\rm{T}}$) range from hundreds of MeV/$c$ up to 20 GeV/$c$. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0$-$90%. The comparison of the $p_{\rm{T}}$-integrated particle ratios, i.e. proton-to-pion (p/$\pi$) and kaon-to-pion (K/$\pi$) ratios, with similar measurements in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV show no significant energy dependence. Blast-wave fits of the $p_{\rm{T}}$ spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/$\pi$, K/$\pi$) as a function of $p_{\rm{T}}$ show pronounced maxima at $p_{\rm{T}}$ $\approx$ 3 GeV/$c$ in central Pb-Pb collisions. At high $p_{\rm{T}}$, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high $p_{\rm{T}}$ and compatible with measurements at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily.

17 data tables

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in pp collisions at $\sqrt{s}$ = 5.02 TeV.

$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

More…

Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 09 (2013) 049, 2013.
Inspire Record 1241570 DOI 10.17182/hepdata.62319

We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at $\sqrt{s} = 0.9$, $2.76$, and $7$ TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators.

27 data tables

Per-trigger near-side pair yield for pT(trig) > 0.7 GeV and pT(assoc) > 0.4 GeV measured at sqrt(s) = 7 TeV.

Per-trigger near-side pair yield for pT(trig) > 0.7 GeV and pT(assoc) > 0.7 GeV measured at sqrt(s) = 7 TeV.

Per-trigger away-side pair yield for pT(trig) > 0.7 GeV and pT(assoc) > 0.4 GeV measured at sqrt(s) = 7 TeV.

More…

Transverse Momentum Distribution and Nuclear Modification Factor of Charged Particles in p-Pb Collisions at sqrt{s_NN} = 5.02 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 082302, 2013.
Inspire Record 1190895 DOI 10.17182/hepdata.37287

The transverse momentum ($p_{\mathrm T}$) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC. The $p_{\mathrm T}$ spectra measured near central rapidity in the range $0.5<p_{\mathrm T}<20$ GeV/$c$ exhibit a weak pseudorapidity dependence. The nuclear modification factor $R_{\mathrm{pPb}}$ is consistent with unity for $p_{\mathrm T}$ above 2 GeV/$c$. This measurement indicates that the strong suppression of hadron production at high $p_{\mathrm T}$ observed in Pb-Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations.

4 data tables

Normalized differential primary charged particle yield.

pp INEL cross section scaled by nuclear overlap.

Nuclear Modification Factor R_pPb in the central region.

More…

Centrality determination of Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044909, 2013.
Inspire Record 1215085 DOI 10.17182/hepdata.66916

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection, and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

6 data tables

$N_\mathrm{part}$ for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the corresponding uncertainties derived from a Glauber calculation. The ${\langle N_\mathrm{part}^{\rm data} \rangle}$ are calculated from the NBD-Glauber fit to the VZERO amplitude, while the ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ are obtained by slicing the impact parameter distribution. ${\langle N_\mathrm{part}^{\rm data} \rangle}$ is also calculated for two variations of the AP, i.e. moving it to 91 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) and to 89 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) respectively. The last three columns report the discrepancies between ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ with the uncertainty of the AP.

Same as Table A.1 for $N_\mathrm{coll}$.

Same as Table A.1 for $T_\mathrm{AA}$.

More…