Search for new phenomena in events with a photon and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 06 (2016) 059, 2016.
Inspire Record 1442359 DOI 10.17182/hepdata.72855

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton--proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 $\rm fb^{-1}$. The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses of up to 710 GeV for dark matter candidate masses up to 150 GeV. In an effective theory of dark matter production, values of the suppression scale $M_*$ up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding $M_{\rm D}$ up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20--40% depending on the number of additional spatial dimensions when applying a truncation procedure.

10 data tables

Distribution of missing transverse momentum, reconstructed treating muons as non-interacting particles, in the data and for the background in the 1muCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

Distribution of missing transverse momentum, reconstructed treating muons as non-interacting particles, in the data and for the background in the 2muCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

Distribution of missing transverse momentum, reconstructed treating electrons as non-interacting particles, in the data and for the background in the 2eleCR. The total background expectation is normalized to the post-fit result. Overflows are included in the final bin. The errors include both statistical and systematic uncertainties determined by a bin-by-bin fit.

More…

Measurement of $W$ boson angular distributions in events with high transverse momentum jets at $\sqrt{s}=$ 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 765 (2017) 132-153, 2017.
Inspire Record 1487726 DOI 10.17182/hepdata.74701

The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.

5 data tables

Measured integrated cross-sections as a function of leading jet transverse momentum for the collinear region ($0.2 < \Delta R < 2.4$), the back-to-back region ($\Delta R > 2.4$) and inclusively.

Measured cross-section as a function of angular separation between the muon and the closest jet. Multiplicative correction factors for using prompt muons and prompt dressing photons in the particle-level selection, derived from ALPGEN 2.14 interfaced with PYTHIA 6.426, are also shown.

Breakdown of uncertainties in percent.

More…

Measurement of the $k_\mathrm{t}$ splitting scales in $Z \to \ell\ell$ events in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 08 (2017) 026, 2017.
Inspire Record 1589844 DOI 10.17182/hepdata.76966

A measurement of the splitting scales occuring in the $k_\mathrm{t}$ jet-clustering algorithm is presented for final states containing a $Z$ boson. The measurement is done using 20.2 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s} = 8$ TeV by the ATLAS experiment at the LHC in 2012. The measurement is based on charged-particle track information, which is measured with excellent precision in the $p_\mathrm{T}$ region relevant for the transition between the perturbative and the non-perturbative regimes. The data distributions are corrected for detector effects, and are found to deviate from state-of-the-art predictions in various regions of the observables.

8 data tables

The measured fiducial as a function of sqrt(d0). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

The measured fiducial as a function of sqrt(d1). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

The measured fiducial as a function of sqrt(d2). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

More…

Measurement of the inclusive jet cross-sections in proton--proton collisions at $\sqrt{s}= $8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2017) 020, 2017.
Inspire Record 1604271 DOI 10.17182/hepdata.76967

Inclusive jet production cross-sections are measured in proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=$8 TeV recorded by the ATLAS experiment at the Large Hadron Collider at CERN. The total integrated luminosity of the analysed data set amounts to $20.2$ fb$^{-1}$. Double-differential cross-sections are measured for jets defined by the anti-$k_{t}$ jet clustering algorithm with radius parameters of $R=0.4$ and $R=0.6$ and are presented as a function of the jet transverse momentum, in the range between 70 GeV and 2.5 TeV and in six bins of the absolute jet rapidity, between 0 and 3.0. The measured cross-sections are compared to predictions of quantum chromodynamics, calculated at next-to-leading order in perturbation theory, and corrected for non-perturbative and electroweak effects. The level of agreement with predictions, using a selection of different parton distribution functions for the proton, is quantified. Tensions between the data and the theory predictions are observed.

12 data tables

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.6

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.6

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.6

More…

Study of hard double-parton scattering in four-jet events in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2016) 110, 2016.
Inspire Record 1479760 DOI 10.17182/hepdata.73908

Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb$^{-1}$, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum $p_{\mathrm{T}} \geq 20$ GeV and pseudorapidity $\eta \leq 4.4$, and at least one having $p_{\mathrm{T}} \geq 42.5$ GeV, the contribution of hard double-parton scattering is estimated to be $f_{\mathrm{DPS}} = 0.092 ^{+0.005}_{-0.011} (\mathrm{stat.}) ^{+0.033}_{-0.037} (\mathrm{syst.})$. After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective overlap area between the interacting protons, $\sigma_{\mathrm{eff}}$, was determined to be $\sigma_{\mathrm{eff}} = 14.9 ^{+1.2}_{-1.0} (\mathrm{stat.}) ^{+5.1}_{-3.8} (\mathrm{syst.})$ mb. This result is consistent within the quoted uncertainties with previous measurements of $\sigma_{\mathrm{eff}}$, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to $21^{+7}_{-6}$% of the total inelastic cross-section measured at $\sqrt{s} = 7$ TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.

21 data tables

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta\phi_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{12}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

More…

Measurements of $\psi(2S)$ and $X(3872) \to J/\psi\pi^+\pi^-$ production in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2017) 117, 2017.
Inspire Record 1495026 DOI 10.17182/hepdata.76839

Differential cross sections are presented for the prompt and non-prompt production of the hidden-charm states $X(3872)$ and $\psi(2S)$, in the decay mode $J/\psi \pi^+\pi^-$, measured using 11.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV by the ATLAS detector at the LHC. The ratio of cross-sections $X(3872)/\psi(2S)$ is also given, separately for prompt and non-prompt components, as well as the non-prompt fractions of $X(3872)$ and $\psi(2S)$. Assuming independent single effective lifetimes for non-prompt $X(3872)$ and $\psi(2S)$ production gives $R_B = \frac{\mathcal{B}(B \rightarrow X(3872)\textrm{ + any}) \mathcal{B}(X(3872 \rightarrow J/\psi\pi^+\pi^-)}{\mathcal{B}(B \rightarrow \psi(2S)\textrm{ + any}) \mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^+\pi^-)} = (3.95 \pm 0.32 \mathrm{(stat)} \pm 0.08\mathrm{(sys)}) \times 10^{-2}$, while separating short- and long-lived contributions, assuming that the short-lived component is due to $B_c$ decays, gives $R_B = (3.57 \pm 0.33\mathrm{(stat)} \pm 0.11\mathrm{(sys)}) \times 10^{-2}$, with the fraction of non-prompt $X(3872)$ produced via $B_c$ decays for $p_\mathrm{T}(X(3872)) > 10$ GeV being $(25 \pm 13\mathrm{(stat)} \pm 2\mathrm{(sys)} \pm 5\mathrm{(spin)})\%$. The distributions of the dipion invariant mass in the $X(3872)$ and $\psi(2S)$ decays are also measured and compared to theoretical predictions.

15 data tables

Measured effective pseudo-proper lifetime for non-prompt $\psi(2S)$ production.

Measured effective pseudo-proper lifetime for non-prompt $X(3872)$ production.

Measured non-prompt $X(3872) / \psi(2S)$ production ratio using the single-lifetime fit model.

More…

Measurement of the prompt $J/\psi$ pair production cross-section in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 76, 2017.
Inspire Record 1502618 DOI 10.17182/hepdata.76840

The production of two prompt $J/\psi$ mesons, each with transverse momenta $p_{\mathrm{T}}>8.5$ GeV and rapidity $|y| < 2.1$, is studied using a sample of proton-proton collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 11.4 fb$^{-1}$ collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised $J/\psi$ production, is measured as a function of the transverse momentum of the lower-$p_{\mathrm{T}}$ $J/\psi$ meson, di-$J/\psi$ $p_{\mathrm{T}}$ and mass, the difference in rapidity between the two $J/\psi$ mesons, and the azimuthal angle between the two $J/\psi$ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two $J/\psi$ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be $\sigma_{\mathrm{eff}} = 6.3 \pm 1.6 \mathrm{(stat)} \pm 1.0 \mathrm{(syst)}$ mb.

16 data tables

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the forward rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the di-$J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

More…

Search for bottom squark pair production in proton--proton collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 547, 2016.
Inspire Record 1472822 DOI 10.17182/hepdata.74005

The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.

37 data tables

Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Signal region (SR) providing the best expected sensitivity in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane.

More…

Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 117 (2016) 182002, 2016.
Inspire Record 1468167 DOI 10.17182/hepdata.74822

This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

1 data table

The measured and extrapolated inelastic cross section. The statistical uncertainty is negligible and is therefore displayed as zero. The first systematic uncertainty is the experimental systematic uncertainty apart from the luminosity, the second is the luminosity uncertainty, and the third is the extrapolation uncertainty.


Search for scalar leptoquarks in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
New J.Phys. 18 (2016) 093016, 2016.
Inspire Record 1462258 DOI 10.17182/hepdata.73322

An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in $pp$ collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider, have been considered. An integrated luminosity of 3.2 fb$^{-1}$, corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 GeV and 1050 GeV (1160 GeV and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.

4 data tables

Normalisation factors for the main backgrounds obtained from the combined fit in each of the channels. The total uncertainty is given.

Search for the first generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

Search for the second generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.

More…