Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton$-$proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2020.
Inspire Record 1806507 DOI 10.17182/hepdata.94788

A search for heavy resonances decaying into a $W$ or $Z$ boson and a Higgs boson produced in proton$-$proton collisions at the Large Hadron Collider at $\sqrt{s} = 13$ TeV is presented. The analysis utilizes the dominant $W \to q \bar{q}^\prime$ or $Z \to q \bar{q}$ and $H \to b \bar{b}$ decays with substructure techniques applied to large-radius jets. A sample corresponding to an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector is analyzed and no significant excess of data is observed over the background prediction. The results are interpreted in the context of the Heavy Vector Triplet model with spin-1 $W^\prime$ and $Z^\prime$ bosons. Upper limits on the cross section are set for resonances with mass between 1.5 and 5.0 TeV, ranging from 6.8 to 0.53 fb for $W^\prime \to WH$ and from 8.7 to 0.53 fb for $Z^\prime \to ZH$ at the 95 % confidence level.

4 data tables

Observed and expected 95% CL upper limits on the cross section in the WH channel.

Observed and expected 95% CL upper limits on the cross section in the ZH channel.

Signal acceptance times efficiency of HVT WH(qqbb) events as a function of the resonance mass at different cut stages. Auxiliary table attached for 2 TeV mass point.

More…

Measurements of inclusive and differential cross-sections of combined $t\bar{t}\gamma$ and $tW\gamma$ production in the $e\mkern-2mu\mu$ channel at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2020) 049, 2020.
Inspire Record 1806806 DOI 10.17182/hepdata.94915

Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton$-$proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is $b$-tagged, are selected. The fiducial cross-section is measured to be $39.6\,^{+2.7}_{-2.3}\,\textrm{fb}$. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.

24 data tables

The measured fiducial cross-section in the electron-muon channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon pT in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon $|\eta|$ in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

More…

Search for heavy diboson resonances in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2020.
Inspire Record 1793572 DOI 10.17182/hepdata.93922

This paper reports on a search for heavy resonances decaying into $WW$, $ZZ$ or $WZ$ using proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 139 $\mathrm{fb^{-1}}$, were recorded with the ATLAS detector from 2015 to 2018 at the Large Hadron Collider. The search is performed for final states in which one $W$ or $Z$ boson decays leptonically, and the other $W$ boson or $Z$ boson decays hadronically. The data are found to be described well by expected backgrounds. Upper bounds on the production cross sections of heavy scalar, vector or tensor resonances are derived in the mass range 300-5000 GeV within the context of Standard Model extensions with warped extra dimensions or including a heavy vector triplet. Production through gluon-gluon fusion, Drell-Yan or vector-boson fusion are considered, depending on the assumed model.

23 data tables

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for ggF/DY production.

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for VBF production.

Selection acceptance times efficiency for the 1 lepton signal events from MC simulations as a function of the resonance mass for ggF/DY production.

More…

Observation of electroweak production of two jets and a $Z$-boson pair with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2020.
Inspire Record 1792133 DOI 10.17182/hepdata.93015

Electroweak symmetry breaking explains the origin of the masses of elementary particles via their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons (with spin one) at the Large Hadron Collider allows to probe the nature of electroweak symmetry breaking with an unprecedented sensitivity. Among all processes related to vector-boson scattering, the electroweak production of two jets and a $Z$-boson pair is a rare and important one. This article reports on the first observation of this process using proton-proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded at a centre-of-mass energy of 13 TeV by the ATLAS detector. Two different final states originating from the decays of the $Z$-boson pair, one containing four charged leptons and the other containing two charged leptons and two neutrinos, are considered. The hypothesis of no electroweak production is rejected with a statistical significance of 5.5 $\sigma$, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, cross-sections for inclusive production of a $Z$-boson pair and two jets are reported for the two final states.

1 data table

Measured and predicted fiducial cross-sections in both the lllljj and ll$\nu\nu$jj channels for the inclusive ZZjj processes. Uncertainties due to different sources are presented


Search for Higgs boson decays into a $Z$ boson and a light hadronically decaying resonance using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
2020.
Inspire Record 1789583 DOI 10.17182/hepdata.93626

A search for Higgs boson decays into a $Z$ boson and a light resonance in two-lepton plus jet events is performed, using a $pp$ collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector, or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95$\% $ confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a $Z$ boson and the signal resonance, with values in the range 17 pb to 340 pb ($16^{+6}_{-5}$ pb to $320^{+130}_{-90}$ pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 pb and 100 pb ($100^{+40}_{-30}$ pb and $100^{+40}_{-30}$ pb) for the $\eta_c$ and $J/\psi$ hypotheses, respectively.

4 data tables

Observed number of data events and expected number of background events in the signal region.

Efficiencies of the MLP selection, complete selection and total expected signal yields for each signal sample, assuming B$(H\to Z(Q/a))=100\%$ and $\sigma(pp\to H) = \sigma_\text{SM}(pp\to H)$. Pythia 8 branching fractions of $a$ are assumed using a $\tan\beta$ value of 1. The MLP efficiencies, total efficiencies, and expected yields are determined using MC samples, with uncertainties due to MC sample statistics, except for the expected background yield. The expected background yield and its uncertainty is calculated as described in the main text of the paper.

Expected and observed 95% CL upper limits on $\sigma(pp\to H)B(H\to Za)/$pb. These results are quoted for $B(a\to gg)=100\%$ and $B(a\to s\bar{s})=100\%$ for each signal sample. The smaller (larger) quoted ranges around the expected limits represent $\pm 1\sigma$ ($\pm 2\sigma$) fluctuations.

More…

Version 3
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2$-$2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for $m_{A}=1.0$ TeV and $m_{A}=1.5$ TeV, respectively.

50 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Search for dijet resonances in events with an isolated charged lepton using $\sqrt{s} = 13$ TeV proton-proton collision data collected by the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2020) 151, 2020.
Inspire Record 1782373 DOI 10.17182/hepdata.94787

A search for dijet resonances in events with at least one isolated charged lepton is performed using $139~{\text{fb}}^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data recorded by the ATLAS detector at the LHC. The dijet invariant-mass ($m_{jj}$) distribution constructed from events with at least one isolated electron or muon is searched in the region $0.22 < m_{jj} < 6.3$ TeV for excesses above a smoothly falling background from Standard Model processes. Triggering based on the presence of a lepton in the event reduces limitations imposed by minimum transverse momentum thresholds for triggering on jets. This approach allows smaller dijet invariant masses to be probed than in inclusive dijet searches, targeting a variety of new-physics models, for example ones in which a new state is produced in association with a leptonically decaying $W$ or $Z$ boson. No statistically significant deviation from the Standard Model background hypothesis is found. Limits on contributions from generic Gaussian signals with widths ranging from that determined by the detector resolution up to 15% of the resonance mass are obtained for dijet invariant masses ranging from 0.25 TeV to 6 TeV. Limits are set also in the context of several scenarios beyond the Standard Model, such as the Sequential Standard Model, a technicolor model, a charged Higgs boson model and a simplified Dark Matter model.

12 data tables

Observed and expected 95% credibility-level upper limits on the cross-section times acceptance times branching ratio for the techicolor model with production of $\rho_T$ decaying to $\pi_T W^{\pm}$. The table also shows the corresponding $1\sigma$ and $2\sigma$ bands for the expected limits. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV.

Observed and expected 95% credibility-level upper limits on the cross-section times acceptance times branching ratio for $W' \to Z' W^{\pm}$ production in the Sequential Standard Model. The table also shows the corresponding $1\sigma$ and $2\sigma$ bands for the expected limits. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV.

Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for the $tbH^+$ model. The table also shows the corresponding $1\sigma$ and $2\sigma$ bands for the expected limits. The limits are calculated using jets in events with at least one isolated lepton ($e$ or $\mu$) with $p_\text{T}^\ell \ge 60$ GeV.

More…

Version 3
Search for the $HH \rightarrow b \bar{b} b \bar{b}$ process via vector-boson fusion production using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 07 (2020) 108, 2020.
Inspire Record 1775750 DOI 10.17182/hepdata.91237

A search for Higgs boson pair production via vector-boson fusion (VBF) in the $b\bar{b}b\bar{b}$ final state is carried out with the ATLAS experiment, using 126 fb$^{-1}$ of proton-proton collision data delivered at $\sqrt{s} = 13$ TeV by the Large Hadron Collider. This search is sensitive to VBF production of additional heavy bosons that may decay into Higgs boson pairs, and in a non-resonant topology it can constrain the quartic coupling between the Higgs bosons and vector bosons. No significant excess, relative to the background-only Standard Model expectation, is observed, and limits on the production cross-section are set at the 95% confidence level for a heavy scalar resonance in the context of an extended Higgs sector, and for non-resonant Higgs boson pair production. Interpretation in terms of the coupling between a Higgs boson pair and two vector bosons is also provided: coupling values normalised to the Standard Model expectation of $\kappa_{2V} < -0.56$ and $\kappa_{2V} > 2.89$ are excluded at the 95% confidence level in data.

6 data tables

Acceptance x efficiency versus $\kappa_{2V}$ for non-resonant signal of $HH$.

Acceptance x efficiency versus resonance mass for both narrow and broad resonance $X$ to $HH$.

Post-fit mass distribution of the $HH$ candidates in the signal region. The expected background is shown after the profile-likelihood fit to data with the background-only hypothesis; the narrow-width resonant signal at 800 GeV and the non-resonant signal at $\kappa_{2V}$ = 3 are overlaid, both normalised to the corresponding observed upper limits on the cross-section.

More…

Measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt {s}$ =13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

252 data tables

Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

More…

Version 2
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt {s}$=13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 072001, 2020.
Inspire Record 1771533 DOI 10.17182/hepdata.91127

A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell $W$ and $Z$ bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of $\sqrt{s}$ = 13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015-2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full dataset are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV.

29 data tables

Distributions in SR-low of the data and post-fit background prediction for m<sub>T</sub>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for H<sup>boost</sup>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for m<sub>eff</sub><sup>3&#8467;</sup>/H<sup>boost</sup>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

More…

Version 2
Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s}=$ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052005, 2020.
Inspire Record 1767649 DOI 10.17182/hepdata.91374

This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.

98 data tables

Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.

Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.

Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.

More…

Version 2
Search for direct stau production in events with two hadronic $\tau$-leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 032009, 2020.
Inspire Record 1765529 DOI 10.17182/hepdata.92006

A search for the direct production of the supersymmetric partners of $\tau$-leptons (staus) in final states with two hadronically decaying $\tau$-leptons is presented. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of $139$ fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of direct production of stau pairs with each stau decaying into the stable lightest neutralino and one $\tau$-lepton in simplified models where the two stau mass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidence level for a massless lightest neutralino.

26 data tables

The observed upper limits on the model cross-section in units of pb for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production. Three points at ${M({\tilde{\chi}}^{0}_{1})}=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

The observed upper limits on the model cross-section in units of pb for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production. Three points at $M({\tilde{\chi}}^{0}_{1})=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

The observed 95\% CL exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production.

More…

Version 2
Measurement of the $Z(\rightarrow\ell^+\ell^-)\gamma$ production cross-section in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 054, 2020.
Inspire Record 1764342 DOI 10.17182/hepdata.89875

The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

7 data tables

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

The measured fiducial cross section vs $|\eta^\gamma|$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

More…

Measurement of the $t\bar{t}$ production cross-section and lepton differential distributions in $e\mu $ dilepton events from $pp$ collisions at $\sqrt{s}=13\,\text {TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 528, 2020.
Inspire Record 1759875 DOI 10.17182/hepdata.91242

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in proton$-$proton collisions at $\sqrt{s}=13$ TeV, using $36.1$ fb$^{-1}$ of data collected in 2015$-$16 by the ATLAS experiment at the LHC. Using events with an opposite-charge $e\mu$ pair and $b$-tagged jets, the cross-section is measured to be: \begin{equation}\nonumber \sigma_{t\bar{t}} = 826.4 \pm 3.6\,\mathrm{(stat)}\ \pm 11.5\,\mathrm{(syst)}\ \pm 15.7\,\mathrm{(lumi)}\ \pm 1.9\,\mathrm{(beam)}\,\mathrm{pb}, \end{equation} where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on $m_t^{\mathrm{pole}}$, giving $m_t^{\mathrm{pole}}=173.1^{+2.0}_{-2.1}$ GeV. It is also combined with measurements at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV to derive ratios and double ratios of $t\bar{t}$ and $Z$ cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results compared with predictions from various Monte Carlo event generators.

59 data tables

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 23 and 24.

Normalised differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 25 and 26.

Absolute differential cross-section in the fiducial region as a function of lepton |eta|. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The corresponding correlation matrices are given in Tables 27 and 28.