Measurement of the distributions of event-by-event flow harmonics in lead--lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 11 (2013) 183, 2013.
Inspire Record 1233359 DOI 10.17182/hepdata.62783

The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5<pT<1 GeV and pT>1 GeV. When these distributions are rescaled to the same mean values, the adjusted shapes are found to be nearly the same for these two pT ranges. The v_n distributions are compared with the eccentricity distributions from two models for the initial collision geometry: a Glauber model and a model that includes corrections to the initial geometry due to gluon saturation effects. Both models fail to describe the experimental data consistently over most of the measured centrality range.

201 data tables

The relationship between centrality intervals and MEAN(Npart) estimated from the Glauber model.

The MEAN(Npart) dependence of MEAN(V2) for three pT ranges together with the total systematic uncertainties.

The MEAN(Npart) dependence of SIGMA(V2) for three pT ranges together with the total systematic uncertainties.

More…

Measurement of the azimuthal anisotropy for charged particle production in sqrt(s_NN) = 2.76 TeV lead-lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 86 (2012) 014907, 2012.
Inspire Record 1093733 DOI 10.17182/hepdata.59488

Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 mb^-1. This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle (phi), with the coefficients v_n denoting the magnitude of the anisotropy. Significant v_2-v_6 values are obtained as a function of transverse momentum (0.5<pT<20 GeV), pseudorapidity (|eta|<2.5) and centrality using an event plane method. The v_n values for n>=3 are found to vary weakly with both eta and centrality, and their pT dependencies are found to follow an approximate scaling relation, v_n^{1/n}(pT) \propto v_2^{1/2}(pT). A Fourier analysis of the charged particle pair distribution in relative azimuthal angle (Dphi=phi_a-phi_b) is performed to extract the coefficients v_{n,n}=<cos (n Dphi)>. For pairs of charged particles with a large pseudorapidity gap (|Deta=eta_a-eta_b|>2) and one particle with pT<3 GeV, the v_{2,2}-v_{6,6} values are found to factorize as v_{n,n}(pT^a,pT^b) ~ v_n(pT^a)v_n(pT^b) in central and mid-central events. Such factorization suggests that these values of v_{2,2}-v_{6,6} are primarily due to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the v_{1,1}(pT^a,pT^b) data are consistent with the combined contributions from a rapidity-even v_1 and global momentum conservation. A two-component fit is used to extract the v_1 contribution. The extracted v_1 is observed to cross zero at pT\sim1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v_3, and decreases at higher pT.

209 data tables

The EP Resolution Factor vs. Centrality for n values from2 to 6.

The Chi Reolution Factor vs. Centrality for n values from 2 to 6.

The one-dimensional Delta(PHI) correlation function vs Delta(PHI) for |DETARAP| in the range 2 to 5 summed over all n values from 1 to 6.

More…