Showing 10 of 15 results
A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.
A search for high-mass charged and neutral bosons decaying to $W\gamma$ and $Z\gamma$ final states is presented in this paper. The analysis uses a data sample of $\sqrt{s} = 13$ TeV proton-proton collisions with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during LHC Run 2 operation. The sensitivity of the search is determined using models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of resonance masses explored extends from 1.0 TeV to 6.8 TeV. At these high resonance masses, it is beneficial to target the hadronic decays of the $W$ and $Z$ bosons because of their large branching fractions. The decay products of the high-momentum $W/Z$ bosons are strongly collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No evidence of a signal above the Standard Model backgrounds is observed, and upper limits on the production cross-sections of these bosons times their branching fractions to $W\gamma$ and $Z\gamma$ are derived for various boson production models.
The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 1000$ GeV. The decays simulated are for the production models $q\bar{q}' \to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.
The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 4000$ GeV. The decays simulated are for the production models $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.
Total efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\mathrm{T}}^{\gamma}$ selection used to optimize the signal significance spin-0 $gg\to X^0 \to Z\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with $W/Z$ hadronic decays are shown as the points on each curve. The line presents interpolated results.
Total efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\mathrm{T}}^{\gamma}$ selection used to optimize the signal significance spin-1 $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with $W/Z$ hadronic decays are shown as the points on each curve. The line presents interpolated results.
Total efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\mathrm{T}}^{\gamma}$ selection used to optimize the signal significance spin-2 $q\bar{q}\to X^0 \to Z\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with $W/Z$ hadronic decays are shown as the points on each curve. The line presents interpolated results.
Total efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\mathrm{T}}^{\gamma}$ selection used to optimize the signal significance spin-2 $gg\to X^0 \to Z\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with $W/Z$ hadronic decays are shown as the points on each curve. The line presents interpolated results.
The $m_{J\gamma}$ distributions of data events selected for the spin-1 $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$ search in the D2 category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-1 $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$ search in the WMASS category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-0 $gg \to X^{0} \to Z\gamma$ search in the BTAG category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-0 $gg \to X^{0} \to Z\gamma$ search in the D2 category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-0 $gg \to X^{0} \to Z\gamma$ search in the ZMASS category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-2 $gg \to X^{0} \to Z\gamma$ search in the BTAG category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-2 $gg \to X^{0} \to Z\gamma$ search in the D2 category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-2 $gg \to X^{0} \to Z\gamma$ search in the ZMASS category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-2 $q\bar{q} \to X^{0} \to Z\gamma$ search in the BTAG category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-2 $q\bar{q} \to X^{0} \to Z\gamma$ search in the D2 category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The $m_{J\gamma}$ distributions of data events selected for the spin-2 $q\bar{q} \to X^{0} \to Z\gamma$ search in the ZMASS category. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines.
The 95% CL upper limits on $\sigma(pp\to X)\times B(X\to W/Z\gamma)$ as a function of $m_{X}$ for spin-0 $gg \to X^{0} \to Z\gamma$. The observed limits are shown as a solid black line and the expected ones are shown as a dashed line with the 1$\sigma$ (2$\sigma$) uncertainty band presented as the green (yellow) band.
The result of a search for the pair production of the lightest supersymmetric partner of the bottom quark ($\tilde{b}_{1}$) using 139 fb$^{-1}$ of proton-proton data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector is reported. In the supersymmetric scenarios considered both of the bottom-squarks decay into a $b$-quark and the second-lightest neutralino, $\tilde{b}_{1} \rightarrow b + \tilde{\chi}^{0}_{2}$. Each $\tilde{\chi}^{0}_{2}$ is assumed to subsequently decay with 100% branching ratio into a Higgs boson ($h$) like the one in the Standard Model and the lightest neutralino: $\tilde{\chi}^{0}_{2} \rightarrow h + \tilde{\chi}^{0}_{1}$. The $\tilde{\chi}^{0}_{1}$ is assumed to be the lightest supersymmetric particle (LSP) and is stable. Two signal mass configurations are targeted: the first has a constant LSP mass of 60 GeV; and the second has a constant mass difference between the $\tilde{\chi}^{0}_{2}$ and $\tilde{\chi}^{0}_{1}$ of 130 GeV. The final states considered contain no charged leptons, three or more $b$-jets, and large missing transverse momentum. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered. Limits at the 95% confidence level are placed in the supersymmetric models considered, and bottom-squarks with mass up to 1.5 TeV are excluded.
Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of $m_{\mathrm{eff}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of $m_{\mathrm{eff}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of $m_{\mathrm{eff}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of Object-based $E_{\mathrm{T}}^{\mathrm{miss}} {Sig.}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of Object-based $E_{\mathrm{T}}^{\mathrm{miss}} {Sig.}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of Object-based $E_{\mathrm{T}}^{\mathrm{miss}} {Sig.}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of MaxMin alternative algorithm $m(h_{\mathrm{cand1}},h_{\mathrm{cand2}})_{\mathrm{avg}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of MaxMin alternative algorithm $m(h_{\mathrm{cand1}},h_{\mathrm{cand2}})_{\mathrm{avg}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of MaxMin alternative algorithm $m(h_{\mathrm{cand1}},h_{\mathrm{cand2}})_{\mathrm{avg}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of Leading jet $p_T$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of Leading jet $p_T$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of Leading jet $p_T$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of MaxMin algorithm $m_{hcand}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of MaxMin algorithm $m_{hcand}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Distributions of MaxMin algorithm $m_{hcand}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.
Signal efficiency in SRA_M_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_M_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_M_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal acceptance in SRC_28 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_28 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_28 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_26 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_26 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_26 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_24 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_24 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_24 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_M_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_M_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_M_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRB for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRB for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRB for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_L_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_L_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_L_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_incl for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_incl for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_incl for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_L_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_L_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_L_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_incl_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_incl_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_incl_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_incl_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_incl_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_incl_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal efficiency in SRA_H_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_H_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_H_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_L_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_L_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_L_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRB for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRB for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRB for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal acceptance in SRC_22 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_22 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRC_22 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal efficiency in SRA_H_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_H_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_H_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_24 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_24 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_24 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_26 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_26 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_26 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal acceptance in SRA_H_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_H_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_H_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal efficiency in SRA_incl_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_incl_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_incl_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_22 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_22 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_22 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal acceptance in SRA_M_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_M_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_M_m60 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal efficiency in SRC_28 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_28 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_28 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal acceptance in SRA_H_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_H_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal acceptance in SRA_H_dm130 for simplified models with $\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$ production
Signal efficiency in SRA_incl_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_incl_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_incl_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_L_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_L_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_L_m60 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_M_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_M_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRA_M_dm130 for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_incl for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_incl for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Signal efficiency in SRC_incl for simplified models with '$\widetilde{b}\widetilde{b}$ $\rightarrow$ $b\bar{b} \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$ $\rightarrow$ hh$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$, h $\rightarrow$ $b\bar{b}$' production
Observed 95% CLs exclusion limit for the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid for the best combined signal regions.
Observed 95% CLs exclusion limit for the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid for the best combined signal regions.
Observed 95% CLs exclusion limit for the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid for the best combined signal regions.
Expected 95% CLs exclusion limit for the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid for the best combined signal regions.
Expected 95% CLs exclusion limit for the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid for the best combined signal regions.
Expected 95% CLs exclusion limit for the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid for the best combined signal regions.
Observed 95% CLs exclusion limit for the $M(\widetilde{\chi}_{1}^{0})$=60GeV signal grid for the best combined signal regions.
Observed 95% CLs exclusion limit for the $M(\widetilde{\chi}_{1}^{0})$=60GeV signal grid for the best combined signal regions.
Observed 95% CLs exclusion limit for the $M(\widetilde{\chi}_{1}^{0})$=60GeV signal grid for the best combined signal regions.
Expected 95% CLs exclusion limit for the $M(\widetilde{\chi}_{1}^{0})$=60GeV signal grid for the best combined signal regions.
Expected 95% CLs exclusion limit for the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid for the best combined signal regions.
Expected 95% CLs exclusion limit for the $M(\widetilde{\chi}_{1}^{0})$=60GeV signal grid for the best combined signal regions.
Model dependent upper limit on the best combined signal regions considered in the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid
Model dependent upper limit on the best combined signal regions considered in the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid
Model dependent upper limit on the best combined signal regions considered in the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid
Model dependet upper limits on the best combined signal regions considered in the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid
Model dependet upper limits on the best combined signal regions considered in the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid
Model dependet upper limits on the best combined signal regions considered in the $\Delta M(\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{0})$=130GeV signal grid
Result of background only fit applied to signal regions. Event yields from the signal regions compared with SM MC predictions for the 3 highest contributing backgrounds separately and combined minor backgrounds.
Result of background only fit applied to signal regions. Event yields from the signal regions compared with SM MC predictions for the 3 highest contributing backgrounds separately and combined minor backgrounds.
Result of background only fit applied to signal regions. Event yields from the signal regions compared with SM MC predictions for the 3 highest contributing backgrounds separately and combined minor backgrounds.
Expected background event yields and dominant systematic uncertainties on background estimates in the A-type (inclusive), B-type and C-type (inclusive) regions.
Expected background event yields and dominant systematic uncertainties on background estimates in the A-type (inclusive), B-type and C-type (inclusive) regions.
Expected background event yields and dominant systematic uncertainties on background estimates in the A-type (inclusive), B-type and C-type (inclusive) regions.
Background-only fit results for the A- and B-type regions performed using 139$fb^{-1}$ of data. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the A- and B-type regions performed using 139$fb^{-1}$ of data. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the A- and B-type regions performed using 139$fb^{-1}$ of data. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the C-type region performed using 139$fb^{-1}$ of data. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the C-type region performed using 139$fb^{-1}$ of data. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the C-type region performed using 139$fb^{-1}$ of data. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Observed 95% CL upper limits on the visible cross sections σvis, the observed (S95obs) and expected (S95exp) 95% CL upper limits on the number of signal events with ± 1 σ excursions of the expectation, the CL of the background-only hypothesis, CLB, the discovery p-value (p0), truncated at 0.5, and the associated significance.
Observed 95% CL upper limits on the visible cross sections σvis, the observed (S95obs) and expected (S95exp) 95% CL upper limits on the number of signal events with ± 1 σ excursions of the expectation, the CL of the background-only hypothesis, CLB, the discovery p-value (p0), truncated at 0.5, and the associated significance.
Observed 95% CL upper limits on the visible cross sections σvis, the observed (S95obs) and expected (S95exp) 95% CL upper limits on the number of signal events with ± 1 σ excursions of the expectation, the CL of the background-only hypothesis, CLB, the discovery p-value (p0), truncated at 0.5, and the associated significance.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRA selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (1100, 330, 200)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRA selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (1100, 330, 200)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRA selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (1100, 330, 200)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRB selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (700, 680, 550)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRB selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (700, 680, 550)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRB selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (700, 680, 550)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRC selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (1200, 1150, 60)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRC selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (1200, 1150, 60)$ GeV, considered.
Cutflow of the MC events scaled to 139 $fb^{-1}$ for the SRC selections, with a scalar bottom signal of m$(\widetilde{b}_{1},\widetilde{\chi}_2^0,\widetilde{\chi}_1^0) = (1200, 1150, 60)$ GeV, considered.
This Letter presents a search for the production of a long-lived neutral particle ($Z_d$) decaying within the ATLAS hadronic calorimeter, in association with a Standard Model (SM) $Z$ boson produced via an intermediate scalar boson, where $Z\to l^+l^-$ ($l=e,\mu$). The data used were collected by the ATLAS detector during 2015 and 2016 $pp$ collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV at the Large Hadron Collider and corresponds to an integrated luminosity of $36.1\pm0.8$ fb$^{-1}$. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its $c\tau$ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% confidence level up to 10% for $m_{Z_d}$ between 5 and 15 GeV.
The product of acceptance and efficiency for all signal MC samples.
A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the high-Emiss region.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Model dependent upper limits on cross-section (pb) for the electroweak production are shown by grey numbers in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Model dependent upper limits on cross-section (fb) for the electroweak production are shown by grey numbers in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Model dependent upper limits on cross-section (pb) for the electroweak production are shown by grey numbers in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Model dependent upper limits on cross-section (pb) for the electroweak production are shown by grey numbers in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Model dependent upper limits on cross-section (pb) for the electroweak production are shown by grey numbers in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Total acceptance $\times$ efficiency of the electroweak channel. The total signal acceptance $\times$ efficiency is defined as the probability of an event passing the signal region selection when an electroweak gaugino pair is produced in a pp collision.
Total acceptance $\times$ efficiency of the electroweak channel. The total signal acceptance $\times$ efficiency is defined as the probability of an event passing the signal region selection when an electroweak gaugino pair is produced in a pp collision.
Total acceptance $\times$ efficiency of the electroweak channel. The total signal acceptance $\times$ efficiency is defined as the probability of an event passing the signal region selection when an electroweak gaugino pair is produced in a pp collision.
Total acceptance $\times$ efficiency of the electroweak channel. The total signal acceptance $\times$ efficiency is defined as the probability of an event passing the signal region selection when an electroweak gaugino pair is produced in a pp collision.
Total acceptance $\times$ efficiency of the electroweak channel. The total signal acceptance $\times$ efficiency is defined as the probability of an event passing the signal region selection when an electroweak gaugino pair is produced in a pp collision.
Total acceptance $\times$ efficiency of the strong channel. In white regions, no simulation sample is available. The left-upper triangle region is not allowed kinematically in wino-LSP scenarios. The total signal acceptance $\times$ efficiency is calculated relative to events in which the gluinos decay into electroweak gaugino pairs.
Total acceptance $\times$ efficiency of the strong channel. In white regions, no simulation sample is available. The left-upper triangle region is not allowed kinematically in wino-LSP scenarios. The total signal acceptance $\times$ efficiency is calculated relative to events in which the gluinos decay into electroweak gaugino pairs.
Total acceptance $\times$ efficiency of the strong channel. In white regions, no simulation sample is available. The left-upper triangle region is not allowed kinematically in wino-LSP scenarios. The total signal acceptance $\times$ efficiency is calculated relative to events in which the gluinos decay into electroweak gaugino pairs.
Total acceptance $\times$ efficiency of the strong channel. In white regions, no simulation sample is available. The left-upper triangle region is not allowed kinematically in wino-LSP scenarios. The total signal acceptance $\times$ efficiency is calculated relative to events in which the gluinos decay into electroweak gaugino pairs.
Total acceptance $\times$ efficiency of the strong channel. In white regions, no simulation sample is available. The left-upper triangle region is not allowed kinematically in wino-LSP scenarios. The total signal acceptance $\times$ efficiency is calculated relative to events in which the gluinos decay into electroweak gaugino pairs.
The generator-level acceptance for charginos produced in the electroweak channel as a function of the chargino $eta$ and chargino decay radius (at generator level).
The generator-level acceptance after reconstruction, for selecting and reconstructing charginos as a function of the chargino $eta$ and chargino decay radius (at generator level).
The generator-level acceptance for charginos produced in the electroweak channel as a function of the chargino $eta$ and chargino decay radius (at generator level).
The generator-level acceptance for charginos produced in the electroweak channel as a function of the chargino $eta$ and chargino decay radius (at generator level).
The generator-level acceptance for charginos produced in the electroweak channel as a function of the chargino $eta$ and chargino decay radius (at generator level).
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the electroweak channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The generator-level acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the electroweak channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the electroweak channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the electroweak channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The generator-level acceptance for charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level).
The generator-level acceptance after reconstruction, for selecting and reconstructing charginos as a function of the chargino $\eta$ and chargino decay radius (at generator level).
The generator-level acceptance for charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level).
The generator-level acceptance for charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level).
The generator-level acceptance for charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level).
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The generator-level acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in direct electroweak production with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in direct electroweak production with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in direct electroweak production with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in direct electroweak production with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in direct electroweak production with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in the strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in the strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in the strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in the strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in the strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
The event and tracklet generator-level acceptance and selection efficiency for a few electroweak signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few electroweak signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few electroweak signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few electroweak signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few electroweak signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few strong signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few strong signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few strong signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few strong signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few strong signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
Systematic uncertainties in the signal event yields at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.
Systematic uncertainties in the signal event yields at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.
Systematic uncertainties in the signal event yields at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.
Systematic uncertainties in the signal event yields at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.
Systematic uncertainties in the signal event yields at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.
Observed events, expected background for null signal, and expected signal yields for two benchmark models: electroweak channel with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) and strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. Also shown are the probability of a background-only experiment being more signal-like than observed ($p_0$) and the upper limit on the model-independent visible cross-section at 95\% CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to anti-correlation between different backgrounds.
Observed events, expected background for null signal, and expected signal yields for two benchmark models: electroweak channel with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) and strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. Also shown are the probability of a background-only experiment being more signal-like than observed ($p_0$) and the upper limit on the model-independent visible cross-section at 95\% CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to anticorrelation between different backgrounds.
Observed events, expected background for null signal, and expected signal yields for two benchmark models: electroweak channel with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) and strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. Also shown are the probability of a background-only experiment being more signal-like than observed ($p_0$) and the upper limit on the model-independent visible cross-section at 95\% CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to anti-correlation between different backgrounds.
Observed events, expected background for null signal, and expected signal yields for two benchmark models: electroweak channel with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) and strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. Also shown are the probability of a background-only experiment being more signal-like than observed ($p_0$) and the upper limit on the model-independent visible cross-section at 95\% CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to anti-correlation between different backgrounds.
Observed events, expected background for null signal, and expected signal yields for two benchmark models: electroweak channel with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) and strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. Also shown are the probability of a background-only experiment being more signal-like than observed ($p_0$) and the upper limit on the model-independent visible cross-section at 95\% CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to anti-correlation between different backgrounds.
Effects of systematic uncertainties on the signal exclusion significance at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the estimated number of the fake-tracklet background events is small.
Effects of systematic uncertainties on the signal exclusion significance at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the estimated number of the fake-tracket background events is small.
Effects of systematic uncertainties on the signal exclusion significance at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the estimated number of the fake-tracklet background events is small.
Effects of systematic uncertainties on the signal exclusion significance at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the estimated number of the fake-tracklet background events is small.
Effects of systematic uncertainties on the signal exclusion significance at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the estimated number of the fake-tracklet background events is small.
Cross-section upper limits for the strong production, presented in unit of fb. Left-upper triangle region is unphysical because the wino mass is larger than the gluino mass.
Cross-section upper limits for the strong production, presented in unit of fb. Left-upper triangle region is unphysical because the wino mass is larger than the gluino mass.
Cross-section upper limits for the strong production, presented in unit of fb. Left-upper triangle region is unphysical because the wino mass is larger than the gluino mass.
Cross-section upper limits for the strong production, presented in unit of fb. Left-upper triangle region is unphysical because the wino mass is larger than the gluino mass.
Cross-section upper limits for the strong production, presented in unit of fb. Left-upper triangle region is unphysical because the wino mass is larger than the gluino mass.
A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb$^{-1}$ of $\sqrt{s}=$ 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, $\tilde{t}$, which decays promptly into two quarks through $R$-parity-violating couplings. Top squarks with masses in the range 100 GeV < $m_{\tilde{t}}$ < 410 GeV are excluded at 95% confidence level. If the decay is into a $b$-quark and a light quark, a dedicated selection requiring two $b$-tags is used to exclude masses in the ranges 100 GeV < $m_{\tilde{t}}$ < 470 GeV and 480 GeV < $m_{\tilde{t}}$ < 610 GeV. Additional limits are set on the pair-production of massive colour-octet resonances.
- - - - - - - - - - - - - - - - - - - - <p><b>Cutflows:</b><br> <a href="79059?version=1&table=CutflowTable1">Stop 100GeV</a><br> <a href="79059?version=1&table=CutflowTable2">Stop 500GeV</a><br> <a href="79059?version=1&table=CutflowTable3">Coloron 1500GeV</a><br> </p> <p><b>Event Yields:</b><br> <a href="79059?version=1&table=SRdistribution1">Inclusive stop SR</a><br> <a href="79059?version=1&table=SRdistribution2">Inclusive coloron SR </a><br> <a href="79059?version=1&table=SRdistribution3">b-tagged stop SR</a><br> </p> <p><b>Acceptances and Efficiencies:</b><br> <a href="79059?version=1&table=Acceptance1">Inclusive stop SR, before mass window</a><br> <a href="79059?version=1&table=Acceptance2">Inclusive stop SR, after mass window</a><br> <a href="79059?version=1&table=Acceptance3">Inclusive coloron SR, before mass window</a><br> <a href="79059?version=1&table=Acceptance4">Inclusive coloron SR, after mass window</a><br> <a href="79059?version=1&table=Acceptance5">b-tagged stop SR, before mass window</a><br> <a href="79059?version=1&table=Acceptance6">b-tagged stop SR, after mass window</a><br> </p> <p><b>Cross section upper limits:</b><br> <a href="79059?version=1&table=Limitoncrosssection1">Inclusive stop SR</a><br> <a href="79059?version=1&table=Limitoncrosssection2">Inclusive coloron SR</a><br> <a href="79059?version=1&table=Limitoncrosssection3">b-tagged stop SR</a><br> </p> <p><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left) </p>
Cutflow table for a pair produced top squark of 100 GeV decaying into a b- and an s-quark.
Cutflow table for a pair produced top squark of 500 GeV decaying into a b- and an s-quark.
Cutflow table for a pair produced coloron of 1500 GeV decaying into two quarks.
The observed number of data, background and top squark signal events in each of the signal regions of the inclusive selection
The observed number of data, background and coloron signal events in each of the signal regions of the inclusive selection
The observed number of data, background and top squark signal events in each of the signal regions of the b-tagged selection
Signal acceptance and efficiency (in %) as a function of M(STOP), before mass windows
Signal acceptance (in %) and efficiency as a function of M(STOP), after mass windows
Signal acceptance and efficiency (in %) as a function of M(RHO), before mass windows
Signal acceptance and efficiency (in %) as a function of M(RHO), after mass windows
Signal acceptance (in %) and efficiency as a function of M(STOP), before mass windows
Signal acceptance (in %) and efficiency as a function of M(STOP), after mass windows
Cross section excluded at 95% CL as a function of the top squark mass, for a pair produced top squark with decays into a pair of light-quarks.
Cross section excluded at 95% CL as a function of the cooron mass, for a pair produced coloron with decays into a pair of light-quarks.
Cross section excluded at 95% CL as a function of the top squark mass, for a pair produced top squark with decays into a b- and an s-quark.
A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an $R$-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a $b$-jet. The dataset corresponds to an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a $b$-quark.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1200 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Signal acceptance (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR800 signal region.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Signal efficiency (in %) in the (BRe,BRtau) plane for a 1500 GeV stop, for the SR1100 signal region.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 700 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1150 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 800 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1200 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 900 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1250 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1000 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1300 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1050 GeV stop. All limits are computed at 95% CL.
Observed exclusion limit contour in the (BRe,BRtau) plane for a 1350 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1100 GeV stop. All limits are computed at 95% CL.
Expected exclusion limit contour in the (BRe,BRtau) plane for a 1400 GeV stop. All limits are computed at 95% CL.