Search for resonances in the mass distribution of jet pairs with one or two jets identified as $b$-jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032016, 2018.
Inspire Record 1674532 DOI 10.17182/hepdata.83179

A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

26 data tables

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.

Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.

More…

Version 2
Measurement of the production cross section of three isolated photons in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 781 (2018) 55-76, 2018.
Inspire Record 1644367 DOI 10.17182/hepdata.80511

A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.

13 data tables

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).

More…

Search for the production of a long-lived neutral particle decaying within the ATLAS hadronic calorimeter in association with a $Z$ boson from $pp$ collisions at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 122 (2019) 151801, 2019.
Inspire Record 1702261 DOI 10.17182/hepdata.83963

This Letter presents a search for the production of a long-lived neutral particle ($Z_d$) decaying within the ATLAS hadronic calorimeter, in association with a Standard Model (SM) $Z$ boson produced via an intermediate scalar boson, where $Z\to l^+l^-$ ($l=e,\mu$). The data used were collected by the ATLAS detector during 2015 and 2016 $pp$ collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV at the Large Hadron Collider and corresponds to an integrated luminosity of $36.1\pm0.8$ fb$^{-1}$. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its $c\tau$ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% confidence level up to 10% for $m_{Z_d}$ between 5 and 15 GeV.

1 data table

The product of acceptance and efficiency for all signal MC samples.


Search for charged Higgs bosons decaying into top and bottom quarks at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2018) 085, 2018.
Inspire Record 1686365 DOI 10.17182/hepdata.83203

A search for charged Higgs bosons heavier than the top quark and decaying via $H^\pm \rightarrow tb$ is presented. The data analysed corresponds to 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV and was recorded with the ATLAS detector at the LHC in 2015 and 2016. The production of a charged Higgs boson in association with a top quark and a bottom quark, $pp \rightarrow tb H^\pm$, is explored in the mass range from $m_{H^\pm}$ = 200 to 2000 GeV using multi-jet final states with one or two electrons or muons. Events are categorised according to the multiplicity of jets and how likely these are to have originated from hadronisation of a bottom quark. Multivariate techniques are used to discriminate between signal and background events. No significant excess above the background-only hypothesis is observed and exclusion limits are derived for the production cross-section times branching fraction of a charged Higgs boson as a function of its mass, which range from 2.9 pb at $m_{H^\pm}$ = 200 GeV to 0.070 pb at $m_{H^\pm}$ = 2000 GeV. The results are interpreted in two benchmark scenarios of the Minimal Supersymmetric Standard Model.

5 data tables

Expected and observed limits for the production of $H^{+} \to tb$ in association with a top quark and a bottom quark. The bands surrounding the expected limit show the 68% and 95% confidence intervals. The limits are based on the combination of the $\ell+$jets and $\ell\ell$ final states. Theory predictions are shown for three representative values of $\tan\beta$ in the $m_h^{\mathrm{mod-}}$ benchmark scenario. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.

Expected and observed upper limits on $\tan\beta$ as a function of $m_{H^{+}}$ in the $m_h^{\mathrm{mod-}}$ scenario of the MSSM. Limits are shown for $\tan\beta$ values in the range of 0.5-60, where predictions are available from both scenarios. The bands surrounding the expected limits show the 68% and 95% confidence intervals. The limits are based on the combination of the $\ell+$jets and $\ell\ell$ final states. The production cross-section of $t\bar{t}H$ and $tH$, as well as the branching ratios of the $H$, are fixed to their SM values at each point in the plane. Uncertainties on the predicted $H^{+}$ cross-sections or branching ratios are not considered.

Expected and observed lower limits on $\tan\beta$ as a function of $m_{H^{+}}$ in the $m_h^{\mathrm{mod-}}$ scenario of the MSSM. Limits are shown for $\tan\beta$ values in the range of 0.5-60, where predictions are available from both scenarios. The bands surrounding the expected limits show the 68% and 95% confidence intervals. The limits are based on the combination of the $\ell+$jets and $\ell\ell$ final states. The production cross-section of $t\bar{t}H$ and $tH$, as well as the branching ratios of the $H$, are fixed to their SM values at each point in the plane. Uncertainties on the predicted $H^{+}$ cross-sections or branching ratios are not considered.

More…

Search for charged Higgs bosons decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$ in the $\tau$+jets and $\tau$+lepton final states with 36 fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2018) 139, 2018.
Inspire Record 1683331 DOI 10.17182/hepdata.83355

Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with $H^{\pm}$ decays hadronically or leptonically, the search targets $\tau$+jets and $\tau$+lepton final states, in both cases with a hadronically decaying $\tau$-lepton. No evidence of a charged Higgs boson is found. For the mass range of $m_{H^{\pm}}$ = 90-2000 GeV, upper limits at the 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.2-0.0025 pb. In the mass range 90-160 GeV, assuming the Standard Model cross-section for $t\overline{t}$ production, this corresponds to upper limits between 0.25% and 0.031% for the branching fraction $\mathrm{B}(t\to bH^{\pm}) \times \mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.

6 data tables

Observed and expected 95% CL exclusion limits on $\sigma(pp\to tbH^+)\times \mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.

Observed and expected 95% CL exclusion limits on $\mathrm{\cal{B}}(t\to bH^+)\times\mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.

Observed 95% CL exclusion contour in the tan$\beta$ - $m_H$ plane shown in the context of the hMSSM, for the regions in which theoretical predictions are available (0.5$\leq\text{tan}\beta\leq60$).

More…

Version 3
Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2018) 050, 2018.
Inspire Record 1672099 DOI 10.17182/hepdata.83011

A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}

132 data tables

Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

More…

Version 3
A search for high-mass resonances decaying to $\tau\nu$ in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 120 (2018) 161802, 2018.
Inspire Record 1649273 DOI 10.17182/hepdata.80812

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}$ = 13 TeV produced by the Large Hadron Collider is presented. Only $\tau$-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy $W^{\prime}$ bosons with masses less than 3.7 TeV in the Sequential Standard Model and masses less than 2.2-3.8 TeV depending on the coupling in the non-universal G(221) model are excluded at the 95% credibility level.

24 data tables

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table. The table also contains each background contribution to the Standard Model expectation separately with their statistical uncertainties.

More…

Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 030, 2019.
Inspire Record 1668124 DOI 10.17182/hepdata.82599

A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

4 data tables

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.

More…

Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with two charged leptons and two jets at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 016, 2019.
Inspire Record 1696330 DOI 10.17182/hepdata.83786

A search for heavy right-handed Majorana or Dirac neutrinos $N_R$ and heavy right-handed gauge bosons $W_R$ is performed in events with a pair of energetic electrons or muons, with the same or opposite electric charge, and two energetic jets. The events are selected from $pp$ collision data with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model are observed. The results are interpreted within the theoretical framework of a left-right symmetric model and lower limits are set on masses in the heavy right-handed $W$ boson and neutrino mass plane. The excluded region extends to $m_{W_R}=4.7$ TeV for both Majorana and Dirac $N_R$ neutrinos.

20 data tables

Expected 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.

Observed 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.

Observed and expected 95% CL exclusion, for the tested signal mass hypotheses in the $m_{W_R}–m_{N_R}$ plane, for the Majorana $N_R$ neutrino $ee$ channel.

More…

Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ cross sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 072009, 2019.
Inspire Record 1713423 DOI 10.17182/hepdata.88175

A measurement of the associated production of a top-quark pair ($t\bar{t}$) with a vector boson ($W$, $Z$) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using $36.1$ fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The $t\bar{t}Z$ and $t\bar{t}W$ production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are $\sigma_{t\bar{t}Z} = 0.95 \pm 0.08_{\mathrm{stat.}} \pm 0.10_{\mathrm{syst.}}$ pb and $\sigma_{t\bar{t}W} = 0.87 \pm 0.13_{\mathrm{stat.}} \pm 0.14_{\mathrm{syst.}}$ pb in agreement with the Standard Model predictions. The measurement of the $t\bar{t}Z$ cross section is used to set constraints on effective field theory operators which modify the $t\bar{t}Z$ vertex.

5 data tables

The result of the simultaneous fit to the $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

68% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

95% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

More…