Showing 10 of 13 results
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step variable-x simplified models
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.
A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=13$ TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes ($c\tau$) of 100-1000 mm decaying into a dilepton pair with masses between 0.1-1.0 TeV are presented as a function of $p_T$ and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell, \ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.
A search for new phenomena in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton--proton collision data with an integrated luminosity of $36.1 \; \mathrm{fb}^{-1}$, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair and the lightest neutralino ($\tilde{\chi}_1^0$) via one of two next-to-lightest neutralino ($\tilde{\chi}_2^0$) decay mechanisms: $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$, where the $Z$ boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the $Z$ boson mass; and $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$ with no intermediate $\ell^+\ell^-$ resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 TeV and 1.3 TeV at 95% confidence level, respectively.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-low. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1200 GeV and m(neutralino1) = 900 GeV is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-med. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1600 GeV and m(neutralino1) = 900 GeV, and from an on-$Z$ model with m(gluino) = 1640 GeV and m(neutralino1) = 1160 GeV, is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-high. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1800 GeV and m(neutralino1) = 500 GeV, and from an on-$Z$ model with m(gluino) = 1650 GeV and m(neutralino1) = 550 GeV, is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SRC of the low-pT edge search. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the $Z^{*}$ model with m(gluino) = 1000 GeV and m(neutralino1) = 900 GeV is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SRC-MET of the low-pT edge search. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the $Z^{*}$ model with m(gluino) = 1000 GeV and m(neutralino1) = 900 GeV is overlaid.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Observed 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Expected 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Observed 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Expected 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Observed 95% CL exclusion contours from the on-Z signal regions on the gluino and next-to-lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Expected 95% CL exclusion contours from the on-Z signal regions on the gluino and next-to-lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Observed 95% CL exclusion contours from the on-Z signal regions on the squark and next-to-lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Expected 95% CL exclusion contours from the on-Z signal regions on the squark and next-to-lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Observed 95% CL exclusion contours from the on-Z signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson the lightest neutralino.
Expected 95% CL exclusion contours from the on-Z signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and the lightest neutralino.
Acceptance and efficiency in the on-Z bin for SR-medium for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Acceptance and efficiency in the on-Z bin for SR-high for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SR-low for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SR-medium for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SR-high for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SRC for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SRC-MET for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the signal regions, in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the low-p$_{T}$ signal regions, in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the signal regions, in a SUSYscenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the low-p$_{T}$ signal regions, in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson.
Cutflow table for three benchmark signal points from the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino, with m(gluino) = 1395 GeV and m(neutralino2) = 505 GeV, m(gluino) = 920 GeV and m(neutralino2) = 230 GeV and m(gluino) = 940 GeV and m(neutralino2) = 660 GeV, in the on-$Z$ $m_{ll}$ bins of SR-medium and SR-high for the electron and muon channels separately. The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow table for a signal point from the SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino, with m(gluino) = 1000 GeV and m(neutralino1) = 800 GeV, m(gluino) = 1200 GeV and m(neutralino1) = 500 GeV and m(gluino) = 1400 GeV and m(neutralino1) = 100 GeV, in all m_{ll}$ bins of SR-low, SR-medium and SR-high for the electron and muon channels separately. The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow table for a signal point from the SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson, with m(gluino) = 600 GeV and m(neutralino1) = 560 GeV and m(gluino) = 1000 GeV and m(neutralino1) = 960 GeV, in all $m_{ll}$ bins of SRC and SRC-MET for the electron and muon channels separately. The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson the lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson, corresponding to the SR determined to give the best expected limit for a given signal point.
Low-$p_{T}$ signal region used to derive the exclusion limit in the compressed region for the SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Low-$p_{T}$ signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-2400. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1200. For signal, a squark direct decay model where squarks have mass of 900 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2400. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-3600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-1600. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR3j-1300. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1400. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1800. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2600. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-3000. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1700. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2000. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1800. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.