Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb$^{-1}$ of Pb+Pb data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2021) 050, 2021.
Inspire Record 1811464 DOI 10.17182/hepdata.95747

This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses $2.2$ nb$^{-1}$ of integrated luminosity collected in 2015 and 2018 at $\sqrt{s_\mathrm{NN}}=5.02$ TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\mathrm{T}}^{\gamma} > 2.5$ GeV, pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass $m_{\gamma\gamma} > 5$ GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6-100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval.

11 data tables

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

Measured normalised differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line).

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton $|cos(\theta*)|$ are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

More…

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 807 (2020) 135595, 2020.
Inspire Record 1784454 DOI 10.17182/hepdata.95735

Azimuthal anisotropies of muons from charm and bottom hadron decays are measured in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}= 5.02$ TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2018 with integrated luminosities of $0.5~\mathrm{nb}^{-1}$ and $1.4~\mathrm{nb^{-1}}$, respectively. The kinematic selection for heavy-flavor muons requires transverse momentum $4 < p_\mathrm{T} < 30$ GeV and pseudorapidity $|\eta|<2.0$. The dominant sources of muons in this $p_\mathrm{T}$ range are semi-leptonic decays of charm and bottom hadrons. These heavy-flavor muons are separated from light-hadron decay muons and punch-through hadrons using the momentum imbalance between the measurements in the tracking detector and in the muon spectrometers. Azimuthal anisotropies, quantified by flow coefficients, are measured via the event-plane method for inclusive heavy-flavor muons as a function of the muon $p_\mathrm{T}$ and in intervals of Pb+Pb collision centrality. Heavy-flavor muons are separated into contributions from charm and bottom hadron decays using the muon transverse impact parameter with respect to the event primary vertex. Non-zero elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients are extracted for charm and bottom muons, with the charm muon coefficients larger than those for bottom muons for all Pb+Pb collision centralities. The results indicate substantial modification to the charm and bottom quark angular distributions through interactions in the quark-gluon plasma produced in these Pb+Pb collisions, with smaller modifications for the bottom quarks as expected theoretically due to their larger mass.

6 data tables

Summary of results for Inclusive HF muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

Summary of results for Inclusive HF muon v3 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

Summary of results for charm muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

More…

Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 73, 2020.
Inspire Record 1762209 DOI 10.17182/hepdata.94802

The azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of $165$ $\mathrm{nb}^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic $v_2$ and triangular $v_3$, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum ($p_\mathrm{T}$) between $0.5$ and $50$ GeV. The $v_2$ results are also reported as a function of centrality in three different particle $p_\mathrm{T}$ intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet $p_\mathrm{T}$ thresholds are used. The anisotropies for particles with $p_\mathrm{T}$ less than about $2$ GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for $p_\mathrm{T}$ in the range $9$-$50$ GeV are not explained within current theoretical frameworks. In the $p_\mathrm{T}$ range $2$-$9$ GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.

45 data tables

Distribution of $v_{2}$ from MBT events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

Distribution of $v_{2}$ from $p_{T}^{jet}>75$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

Distribution of $v_{2}$ from $p_{T}^{jet}>100$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

More…

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 082301, 2020.
Inspire Record 1752509 DOI 10.17182/hepdata.95128

The elliptic flow of muons from the decay of charm and bottom hadrons is measured in $pp$ collisions at $\sqrt{s}=13$ TeV using a data sample with an integrated luminosity of 150 pb$^{-1}$ recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4-7 GeV and pseudorapidity range $|\eta|<2.4$. A significant non-zero elliptic anisotropy coefficient $v_{2}$ is observed for muons from charm decays, while the $v_{2}$ value for muons from bottom decays is consistent with zero within uncertainties.

4 data tables

Summary of results for inclusive muon v2 as a function of multiplicity. Uncertainties are statistical and systematic, respectively.

Summary of results for inclusive muon v2 as a function of pT. Uncertainties are statistical and systematic, respectively.

Summary of results for charm and bottom muon v2 as a function of multiplicity. Uncertainties are statistical and systematic, respectively.

More…

Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and $pp$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.C 100 (2019) 064901, 2019.
Inspire Record 1749578 DOI 10.17182/hepdata.91160

Studies of the fragmentation of jets into charged particles in heavy-ion collisions can provide information about the mechanism of jet-quenching by the hot and dense QCD matter created in such collisions, the quark-gluon plasma. This paper presents a measurement of the angular distribution of charged particles around the jet axis in $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV Pb+Pb and $pp$ collisions, using the ATLAS detector at the LHC. The Pb+Pb and $pp$ data sets have integrated luminosities of 0.49 nb$^{-1}$ and 25 pb$^{-1}$, respectively. The measurement is performed for jets reconstructed with the anti-$k_{t}$ algorithm with radius parameter $R = 0.4$ and is extended to an angular distance of $r= 0.8$ from the jet axis. Results are presented as a function of Pb+Pb collision centrality and distance from the jet axis for charged particles with transverse momenta in the 1$-$63 GeV range, matched to jets with transverse momenta in the 126$-$316 GeV range and an absolute value of jet rapidity of less than 1.7. Modifications to the measured distributions are quantified by taking a ratio to the measurements in $pp$ collisions. Yields of charged particles with transverse momenta below 4 GeV are observed to be increasingly enhanced as a function of angular distance from the jet axis, reaching a maximum at $r=0.6$. Charged particles with transverse momenta above 4 GeV have an enhanced yield in Pb+Pb collisions in the jet core for angular distances up to $r = 0.05$ from the jet axis, with a suppression at larger distances.

395 data tables

D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.

D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.

D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.

More…

Measurement of $W^\pm$ boson production in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 935, 2019.
Inspire Record 1746053 DOI 10.17182/hepdata.91908

A measurement of $W^\pm$ boson production in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of $0.49\;\mathrm{nb^{-1}}$. The $W^\pm$ bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying $W^\pm$ bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for $W^+$ and $W^-$ bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the $W^\pm$ boson production cross-sections measured in $pp$ collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for $W^-$ ($W^+$) bosons.

10 data tables

Differential normalised production yields for $W^+$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.

Differential normalised production yields for $W^-$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.

Combined result for lepton charge asymmetry.

More…

Measurement of flow harmonics correlations with mean transverse momentum in lead-lead and proton-lead collisions at $\sqrt{s_{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 985, 2019.
Inspire Record 1743581 DOI 10.17182/hepdata.93057

To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.

51 data tables

The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

The $c_{k}$ for the 0.5-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

The $c_{k}$ for the 1-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

More…

Fluctuations of anisotropic flow in Pb+Pb collisions at $ \sqrt{{\mathrm{s}}_{\mathrm{NN}}} $ = 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2020) 051, 2020.
Inspire Record 1728935 DOI 10.17182/hepdata.89325

Multi-particle azimuthal cumulants are measured as a function of centrality and transverse momentum using 470 $\mu$b$^{-1}$ of Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of harmonic flow coefficients $v_n$ and correlated fluctuations between two harmonics $v_n$ and $v_m$. For the first time, a non-zero four-particle cumulant is observed for dipolar flow, $v_1$. The four-particle cumulants for elliptic flow, $v_2$, and triangular flow, $v_3$, exhibit a strong centrality dependence and change sign in ultra-central collisions. This sign change is consistent with significant non-Gaussian fluctuations in $v_2$ and $v_3$. The four-particle cumulant for quadrangular flow, $v_4$, is found to change sign in mid-central collisions. Correlations between two harmonics are studied with three- and four-particle mixed-harmonic cumulants, which indicate an anti-correlation between $v_2$ and $v_3$, and a positive correlation between $v_2$ and $v_4$. These correlations decrease in strength towards central collisions and either approach zero or change sign in ultra-central collisions. To investigate the possible flow fluctuations arising from intrinsic centrality or volume fluctuations, the results are compared between two different event classes used for centrality definitions. In peripheral and mid-central collisions where the cumulant signals are large, only small differences are observed. In ultra-central collisions, the differences are much larger and transverse momentum dependent. These results provide new information to disentangle flow fluctuations from the initial and final states, as well as new insights on the influence of centrality fluctuations.

291 data tables

NchRec v.s. Et

<NchRec> w.r.t. Et

<Et> w.r.t. NchRec

More…

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 123 (2019) 052001, 2019.
Inspire Record 1728664 DOI 10.17182/hepdata.89399

This letter describes the observation of the light-by-light scattering process, $\gamma\gamma\rightarrow\gamma\gamma$, in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb$^{-1}$, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\textrm{T}}^{\gamma} > 3$ GeV and pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 $\pm$ 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 $\pm$ 13 (stat.) $\pm$ 7 (syst.) $\pm$ 3 (lumi.) nb.

3 data tables

The diphoton acoplanarity A$_{\phi}$ distribution for events satisfying the signal selection, but before the A$_{\phi} < 0.01$ requirement. Data points are compared with the signal and background expectations. Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.

Diphoton transverse momentum for events satisfying the signal selection. Data (points) are compared with the sum of signal and background expectations (histograms). Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.

Fiducial cross section for light-by-light scattering


Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

7 data tables

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).

More…