Showing 10 of 637 results
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The results are interpreted in the context of various $R$-parity-conserving models where squarks and gluinos are produced in pairs or in association and a neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.30 TeV for a simplified model containing only a gluino and the lightest neutralino, assuming the latter is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.85 TeV are excluded if the lightest neutralino is massless. These limits extend substantially beyond the region of supersymmetric parameter space excluded previously by similar searches with the ATLAS detector.
Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-SSd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-SSd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed metSig distributions in signal regions MB-SSd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed metSig distributions in signal regions MB-SSd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-GGd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-GGd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed metSig distributions in signal regions MB-GGd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed metSig distributions in signal regions MB-GGd. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-C. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed $m_{\mathrm{eff}}$ distributions in signal regions MB-C. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed metSig distributions in signal regions MB-C. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed metSig distributions in signal regions MB-C. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed BDT-GGd1 score distributions in signal regions GGd1. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed BDT-GGd1 score distributions in signal regions GGd1. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed BDT-GGo1 score distributions in signal regions GGo1. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Observed BDT-GGo1 score distributions in signal regions GGo1. The histograms show the MC background predictions normalised by the background-only fit. The hatched (red) error bands indicate experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalised using the approximate NNLO+NNLL cross-section times integrated luminosity, are also shown for comparison (masses in GeV).
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd1
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd1
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd2
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd2
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd3
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd3
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd4
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd4
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo1
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo1
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo2
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo2
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo3
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo3
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo4
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo4
Signal region acceptance for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-1600
Signal region acceptance for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-1600
Signal region acceptance for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2200
Signal region acceptance for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2200
Signal region acceptance for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2800
Signal region acceptance for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2800
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-1000
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-1000
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-2200
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-2200
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-3400
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-3400
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 5j-1600
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR 5j-1600
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-1000
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-1000
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-2200
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-2200
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-3400
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-3400
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd1. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd1. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd2. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd2. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd3. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd3. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd4. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd4. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo1. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo1. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo2. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo2. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo3. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo3. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo4. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR BDT-GGo4. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-1600. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-1600. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2200. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2200. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2800. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with squark pair production and decays to a quark and neutralino in SR 2j-2800. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-1000. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-1000. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-2200. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-2200. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-3400. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 4j-3400. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 5j-1600. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and neutralino in SR 5j-1600. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-1000. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-1000. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-2200. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-2200. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-3400. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR 6j-3400. Efficiencies on signal points with low statistics are not reported. The efficiency value -1.0 in the table corresponds to the case where efficiency cannot be calculated due to the null acceptance of the model point.
Exclusion limits in the mass plane of the lightest neutralino and first- and second-generation squarks assuming squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with a dark dashed curve, with the light (yellow) band indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and first- and second-generation squarks assuming squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with a dark dashed curve, with the light (yellow) band indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and first- and second-generation squarks assuming squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and first- and second-generation squarks assuming squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and non degenerated squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with a dark dashed curve, with the light (yellow) band indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and non degenerated squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with a dark dashed curve, with the light (yellow) band indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and non degenerated squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and non degenerated squark pair production and direct decays obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and the gluino for gluino pair production with direct decays obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with a dark dashed curve, with the light (yellow) band indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and the gluino for gluino pair production with direct decays obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with a dark dashed curve, with the light (yellow) band indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and the gluino for gluino pair production with direct decays obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and the gluino for gluino pair production with direct decays obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and squarks. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and squarks. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and squarks. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and squarks. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for squark pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the squark mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for squark pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the squark mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for squark pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the squark mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for squark pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the squark mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and gluinos. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and gluinos. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and gluinos. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits in the mass plane of the lightest neutralino and gluinos. The observed limits are indicated by the medium dark (maroon) curve where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for gluino pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the gluino mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for gluino pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the gluino mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for gluino pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the gluino mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for gluino pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the gluino mass. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 0 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 0 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 0 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 0 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 995 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 995 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 995 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 995 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 1495 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 1495 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The expected limits are indicated with dark dashed curves, with the light (yellow) bands indicating the $1\sigma$ excursions due to experimental and background-only theoretical uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 1495 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
Exclusion limits for the model with combined production of squark pairs, gluino pairs, and of squark--gluino pairs. The neutralino mass is fixed at 1495 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The observed limits are indicated by the medium dark (maroon) curves where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertainties.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for squark-pair production with direct decays.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for squark-pair production with direct decays.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for gluino-pair production with direct decays
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for gluino-pair production with direct decays
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for squark-pair production with a one-step decay via an intermediate chargino.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for squark-pair production with a one-step decay via an intermediate chargino.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for squark-pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the squark mass.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for squark-pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60 GeV and exclusion limits are given for mass difference ratio, $X$, as a function of the squark mass.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for gluino-pair production with a one-step decay via an intermediate chargino.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for gluino-pair production with a one-step decay via an intermediate chargino.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for gluino-pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60~GeV and exclusio limits are given for mass difference ratio, $X$, as a function of the gluino mass.
The observed upper limits on signal cross section corresponding to the best expected signal region in each mass point for gluino-pair production with a one-step decay via an intermediate chargino. The neutralino mass is fixed at 60~GeV and exclusio limits are given for mass difference ratio, $X$, as a function of the gluino mass.
Cut-flow for model-independent search regions targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 139 fb$^{-1}$.
Cut-flow for model-independent search regions targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 139 fb$^{-1}$.
Cut-flow for model-independent search regions targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 139 fb$^{-1}$.
Cut-flow for model-independent search regions targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 139 fb$^{-1}$.
Cut-flow for model-independent search regions targeting squarks and gluinos in models with one-step decay. Expected yields are normalized to a luminosity of 139 $fb^{-1}$.
Cut-flow for model-independent search regions targeting squarks and gluinos in models with one-step decay. Expected yields are normalized to a luminosity of 139 $fb^{-1}$.
Cut-flow for BDT search regions targeting gluinos in models with one-step decays. Expected yields are normalized to a luminosity of 139 $fb^{-1}$.
Cut-flow for BDT search regions targeting gluinos in models with one-step decays. Expected yields are normalized to a luminosity of 139 $fb^{-1}$.
Cut-flow for BDT search regions targeting gluinos in models with direct decays. Expected yields are normalized to a luminosity of 139 $fb^{-1}$.
Cut-flow for BDT search regions targeting gluinos in models with direct decays. Expected yields are normalized to a luminosity of 139 $fb^{-1}$.
This paper presents a measurement of jet fragmentation functions in 0.49 nb$^{-1}$ of Pb+Pb collisions and 25 pb$^{-1}$ of $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in $pp$ collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 316.22 < pTjet < 398.10 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 398.10 < pTjet < 501.18 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 398.10 < pTjet < 501.18 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 398.10 < pTjet < 501.18 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 398.10 < pTjet < 501.18 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 158.49 < pTjet < 199.53 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 199.53 < pTjet < 251.19 and 0.0 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 0.3.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.3 < eta < 0.8.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.8 < eta < 1.2.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 1.2 < eta < 2.1.
The D(z) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
Excess transverse momenta in jet in PbPb compared to pp collisions in different centrality selections for abs(jet rapidity) < 2.1.
The D(pT) distributions in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
Excess particles in jet in PbPb compared to pp collisions in different centrality selections for abs(jet rapidity) < 2.1.
The ratio of the D(z) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
Ratio of R(D(z)) distributions in a given abs(jet rapidity) region to R(D(z)) for abs(jet rapidity) < 0.3 for 126 < pTJet < 158.5 GeV.
The ratio of the D(pT) in different centrality intervals in PbPb and in pp for 251.19 < pTjet < 316.22 and 0.0 < eta < 2.1.
Ratio of R(D(z)) distributions in a given abs(jet rapidity) region to R(D(z)) for abs(jet rapidity) < 0.3 for 158.5 < pTJet < 199.5 GeV.
Excess transverse momenta in jet in PbPb compared to pp collisions in different centrality selections for abs(jet rapidity) < 2.1.
Ratio of R(D(z)) distributions in a given abs(jet rapidity) region to R(D(z)) for abs(jet rapidity) < 0.3 for 199.5 < pTJet < 251.8 GeV.
Excess particles in jet in PbPb compared to pp collisions in different centrality selections for abs(jet rapidity) < 2.1.
Ratio of R(D(z)) distributions in a given abs(jet rapidity) region to R(D(z)) for abs(jet rapidity) < 0.3 for 126 < pTJet < 158.5 GeV.
Ratio of R(D(z)) distributions in a given abs(jet rapidity) region to R(D(z)) for abs(jet rapidity) < 0.3 for 158.5 < pTJet < 199.5 GeV.
Ratio of R(D(z)) distributions in a given abs(jet rapidity) region to R(D(z)) for abs(jet rapidity) < 0.3 for 199.5 < pTJet < 251.8 GeV.
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.