Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1740108 DOI 10.17182/hepdata.90583

A search for long-lived particles decaying to displaced, nonprompt jets and missing transverse momentum is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC in 2016-2018. Candidate signal events containing nonprompt jets are identified using the timing capabilities of the CMS electromagnetic calorimeter. The results of the search are consistent with the background prediction and are interpreted using a gauge-mediated supersymmetry breaking reference model with a gluino next-to-lightest supersymmetric particle. In this model, gluino masses up to 2100, 2500, and 1900 GeV are excluded at 95% confidence level for proper decay lengths of 0.3, 1, and 100 m, respectively. These are the best limits to date for such massive gluinos with proper decay lengths greater than $\sim$0.5 m.

28 data tables

Selection efficiencies for the GMSB model with $m_{\tilde{g}}=1000$ and various proper decay lengths

The distribution (normalized to unity) of number of ECAL cells hit in the jet for jets in a background enriched data sample (satisfying $|\eta| < 1.48$, $PV_{\rm track}^{\rm fraction} > 1/12$, $\mathrm{HEF} > 0.2$, $t_{\mathrm{jet}} < -3\,\mathrm{ns}$ and $E^{\mathrm{CSC}}_\mathrm{ECAL}/E_{\mathrm{ECAL}} < 0.8$) and for signal jets satisfying signal region requirements (except those on $E_{\mathrm{ECAL}}$ and $N^{\mathrm{cell}}_{\mathrm{ECAL}}$).

Summary of the estimated number of background events.

More…

Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with e$\mu\mu$ or $\mu\mu\mu$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1735729 DOI 10.17182/hepdata.89938

A search for a light charged Higgs boson (H$^+$) decaying to a W boson and a CP-odd Higgs boson (A) in final states with e$\mu\mu$ or $\mu\mu\mu$ is performed using data from pp collisions at $\sqrt{s}=$ 13 TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. In this search, it is assumed that the H$^+$ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H$^+$ boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H$^+$ boson is found. Assuming branching fractions $\mathcal{B}$(H$^+ \to$ W$^+$A) $=$1 and $\mathcal{B}$(A $\to \mu\mu$)$ = $ 3 $\times$ 10$^{-4}$, upper limits at 95% confidence level on the branching fraction of the top quark, $\mathcal{B}$(t $\to$ bH$^+$), of 0.63 to 2.9% are obtained, depending on the masses of the H$^+$ aund A bosons. These are the first limits on $\mathcal{B}$(t $\to$ bH$^+$) in the decay mode of the H$^+$ boson: H$^+$ $\to$ W$^+$A $\to$ W$^+\mu^+\mu^-$.

2 data tables

Expected and observed upper limits at 95% CL on the branching fraction of the top quark, $\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})$, for the A boson masses ($\mathit{m}_{\mathrm{A}}$), with an assumption of the $\mathrm{H^{+}}$ boson mass $\mathit{m}_{\mathrm{H^{+}}}=\mathit{m}_{\mathrm{A}}$+85 GeV. In the calculation, the $t\overline{t}$ production cross section is set to 832 pb, and the branching fractions $\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ and $\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})$ are assumed to be $3\times10^{-4}$ and 1, respectively.

Expected and observed upper limits at 95% CL on the branching fraction of the top quark, $\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})$, for the A boson masses ($\mathit{m}_{\mathrm{A}}$), with an assumption of the $\mathrm{H^{+}}$ boson mass $\mathit{m}_{\mathrm{H^{+}}}$ = 160 GeV. In the calculation, the $t\overline{t}$ production cross section is set to 832 pb, and the branching fractions $\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ and $\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})$ are assumed to be $3\times10^{-4}$ and 1, respectively.


Search for the production of W$^\pm$W$^\pm$W$^\mp$ events at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1734235 DOI 10.17182/hepdata.89176

A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb$^{-1}$. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W$^\pm$W$^\pm$W$^\mp$ production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34$^{+0.62}_{-0.34}$. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axion-like particles.

9 data tables

Lost-lepton and three-lepton background contributions.

Non-prompt lepton background estimates.

Summary of typical systematic uncertainties of estimated background contributions.

More…

Observation of nuclear modifications in W$^\pm$ boson production in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1733223 DOI 10.17182/hepdata.88284

The production of W$^\pm$ bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV. Measurements are performed in the W$^\pm \to \mu^\pm\nu_\mu$ channel using a data sample corresponding to an integrated luminosity of 173.4 $\pm$ 8.7 nb$^{-1}$, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame $|\eta^\mu_\mathrm{lab}| <$ 2.4 and transverse momentum $p_\mathrm{T}^\mu >$ 25 GeV/$c$. The W$^\pm$ boson differential cross sections, muon charge asymmetry, and the ratios of W$^\pm$ boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits.

7 data tables

Muon charge asymmetry, $(N_{\mu}^{+} - N_{\mu}^{-})/(N_{\mu}^{+} + N_{\mu}^{-})$, as a function of the muon pseudorapidity in the centre-of-mass frame.

Differential production cross sections for $\textrm{pPb} \to W^{+} + X \to \mu^{+} \nu + X$ for positively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

Differential production cross sections for $\textrm{pPb} \to W^{-} + X \to \mu^{-} \bar{\nu} + X$ for negatively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

More…

Search for resonances decaying to a pair of Higgs bosons in the $\mathrm{b\overline{b}q\overline{q}'}\ell\nu$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2019.
Inspire Record 1728701 DOI 10.17182/hepdata.88898

A search for new massive particles decaying into a pair of Higgs bosons in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed for resonances with a mass between 0.8 and 3.5 TeV using events in which one Higgs boson decays into a bottom quark pair and the other decays into two W bosons that subsequently decay into a lepton, a neutrino, and a quark pair. The Higgs boson decays are reconstructed with techniques that identify final state quarks as substructure within boosted jets. The data are consistent with standard model expectations. Exclusion limits are placed on the product of the cross section and branching fraction for generic spin-0 and spin-2 massive resonances. The results are interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. These are the best results to date from searches for an HH resonance decaying to this final state, and they are comparable to the results from searches in other channels for resonances with masses below 1.5 TeV.

2 data tables

Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.

Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.


Search for a low-mass $\tau^+\tau^-$ resonance in association with a bottom quark in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration
No Journal Information, 2019.
Inspire Record 1726509 DOI 10.17182/hepdata.88348

A general search is presented for a low-mass $\tau^+\tau^-$ resonance produced in association with a bottom quark. The search is based on proton-proton collision data at a center-of-mass energy of 13\TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The data are consistent with the standard model expectation. Upper limits at 95% confidence level on the cross section times branching fraction are determined for two signal models: a light pseudoscalar Higgs boson decaying to a pair of $\tau$ leptons produced in association with bottom quarks, and a low-mass boson A decaying to a $\tau$-lepton pair that is produced in the decay of a bottom-like quark B such that B$\to$bA. Masses between 25 and 70 GeV are probed for the light pseudoscalar boson with upper limits ranging from 250 to 44 pb. Upper limits from 20 to 0.3 pb are set on B masses between 170 and 450 GeV for A boson masses between 20 and 70 GeV.

18 data tables

The product of acceptance, efficiency, and branching fraction of $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with $\mathrm{A} \rightarrow \tau\tau$ in the $\mathrm{e}\tau_\mathrm{h}$ and $\mu\tau_\mathrm{h}$ channels of the 1 b tag event category, as a function of the pseudoscalar mass. The selections are as described in the paper. The uncertainty refers to the statistical uncertainty only.

Observed $m_{\tau\tau}$ distribution in the $\mathrm{e}\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.

Observed $m_{\tau\tau}$ distribution in the $\mu\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.

More…

Constraints on anomalous HVV couplings from the production of Higgs bosons decaying to $\tau$ lepton pairs

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev., 2019.
Inspire Record 1725474 DOI 10.17182/hepdata.87255

A study is presented of anomalous HVV interactions of the Higgs boson, including its $CP$ properties. The study uses Higgs boson candidates produced mainly in vector boson fusion and gluon fusion that subsequently decay to a pair of $\tau$ leptons. The data were recorded by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A matrix element technique is employed for the analysis of anomalous interactions. The results are combined with those from the H$\to 4\ell$ decay channel presented earlier, yielding the most stringent constraints on anomalous Higgs boson couplings to electroweak vector bosons expressed as effective cross-section fractions and phases: the $CP$-violating parameter $f_{a3}\cos(\phi_{a3})=(0.00\pm0.27)\times10^{-3}$ and the $CP$-conserving parameters $f_{a2}\cos(\phi_{a2})=(0.08^{+1.04}_{-0.21})\times10^{-3}$, $f_{\Lambda1}\cos(\phi_{\Lambda1})=(0.00^{+0.53}_{-0.09})\times10^{-3}$, and $f_{\Lambda1}^{\mathrm{Z}\gamma}\cos(\phi_{\Lambda1}^{\mathrm{Z}\gamma})=(0.0^{+1.1}_{-1.3})\times10^{-3}$. The current data set does not allow for precise constraints on $CP$ properties in the gluon fusion process. The results are consistent with standard model expectations.

4 data tables

Observed and expected likelihood scans of $f_{\Lambda1}\cos\phi_{\Lambda1}$. See Section 4 of the paper for more details.

Observed and expected likelihood scans of $f_{\Lambda1}^{Z\gamma}\cos\phi_{\Lambda1}^{Z\gamma}$. See Section 4 of the paper for more details.

Observed and expected likelihood scans of $f_{a2}\cos\phi_{a2}$. See Section 4 of the paper for more details.

More…

Pseudorapidity distributions of charged hadrons in xenon-xenon collisions at $\sqrt{s_\mathrm{NN}} =$ 5.44 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1719334 DOI 10.17182/hepdata.88285

Measurements of the pseudorapidity distributions of charged hadrons produced in xenon-xenon collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.44 TeV are presented. The measurements are based on data collected by the CMS experiment at the LHC. The yield of primary charged hadrons produced in xenon-xenon collisions in the pseudorapidity range $|\eta| < $ 3.2 is determined using the silicon pixel detector in the CMS tracking system. For the 5% most central collisions, the charged-hadron pseudorapidity density in the midrapidity region $|\eta| <$ 0.5 is found to be 1187 $\pm$ 36 (syst), with a negligible statistical uncertainty. The rapidity distribution of charged hadrons is also presented in the range $|y| <$ 3.2 and is found to be independent of rapidity around $y =$ 0. Comparisons of charged-hadron multiplicities between xenon-xenon and lead-lead collisions at similar collision energies show that particle production at midrapidity is strongly dependent on the collision geometry in addition to the system size and collision energy.

7 data tables

Averaged and symmetrised charged-hadron pseudorapidity density distributions in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV, for events in the 0--80\%, 0--5\%, and 50--55\% centrality intervals. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.

Averaged and symmetrised charged-hadron rapidity density distributions in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV, for events in the 0--80\% centrality interval. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.

Charged-hadron pseudorapidity density in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV at midrapidity as a function of event centrality. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.

More…

Observation of Two Excited B$^+_\mathrm{c}$ States and Measurement of the B$^+_\mathrm{c}$(2S) Mass in pp Collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 132001, 2019.
Inspire Record 1718338 DOI 10.17182/hepdata.88919

Signals consistent with the B$^+_\mathrm{c}$(2S) and B$^{*+}_\mathrm{c}$(2S) states are observed in proton-proton collisions at $\sqrt{s} =$ 13 TeV, in an event sample corresponding to an integrated luminosity of 140 fb$^{-1}$, collected by the CMS experiment during the 2016, 2017, and 2018 LHC running periods. These excited $\bar{\mathrm{b}}$c states are observed in the B$^+_\mathrm{c}\pi^+\pi^-$ invariant mass spectrum, with the ground state B$^+_\mathrm{c}$ reconstructed through its decay to J/$\psi\,\pi^+$. The two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of the B$^+_\mathrm{c}$(2S) meson is measured to be 6871.0 $\pm$ 1.2 (stat) $\pm$ 0.8 (syst) $\pm$ 0.8 (B$^+_\mathrm{c}$) MeV, where the last term corresponds to the uncertainty in the world-average B$^+_\mathrm{c}$ mass.

2 data tables

Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.

Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.


Measurement of electroweak WZ boson production and search for new physics in WZ $+$ two jets events in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1713565 DOI 10.17182/hepdata.89174

A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ$\to \ell\nu\ell'\ell'$, where $\ell, \ell' = $e, $\mu$. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented.

5 data tables

The measured WZ cross section in the tight EWK fiducial region.

The measured WZ cross section in the loose EWK fiducial region.

The measured EWK WZ scale factor (mu) in the tight EWK fiducial region. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

More…

Measurement of the top quark mass in the all-jets final state at $\sqrt{s} =$ 13 TeV and combination with the lepton+jets channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C79 (2019) 313, 2019.
Inspire Record 1711672 DOI 10.17182/hepdata.89051

A top quark mass measurement is performed using $35.9{\,\text {fb}^{-1}} $ of LHC proton–proton collision data collected with the CMS detector at $\sqrt{s}=13\,\text {TeV} $ . The measurement uses the ${\mathrm {t}\overline{\mathrm {t}}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the ${\mathrm {t}\overline{\mathrm {t}}}$  system and suppress the multijet background. Using the ideogram method, the top quark mass ( $m_{\mathrm {t}}$ ) is determined, simultaneously constraining an additional jet energy scale factor ( $\text {JSF}$ ). The resulting value of $m_{\mathrm {t}} =172.34\pm 0.20\,\text {(stat+JSF)} \pm 0.70\,\text {(syst)} \,\text {GeV} $ is in good agreement with previous measurements. In addition, a combined measurement that uses the ${\mathrm {t}\overline{\mathrm {t}}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_{\mathrm {t}}$ measurement of $172.26\pm 0.07\,\text {(stat+JSF)} \pm 0.61\,\text {(syst)} \,\text {GeV} $ . This is the first combined $m_{\mathrm {t}}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.

1 data table

Measured top quark mass $m_{t}$


Version 2
Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J., 2018.
Inspire Record 1711260 DOI 10.17182/hepdata.85746

A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. Final states studied for $\mathrm{T\overline{T}}$ production include those where one of the T quarks decays via T$\to$tZ and the other via T$\to$bW, tZ, or tH, where H is a Higgs boson. For the $\mathrm{B\overline{B}}$ case, final states include those where one of the B quarks decays via B$\to$bZ and the other B$\to$tW, bZ, or bH. Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for T$\to$tZ, and B$\to$bZ, T and B quark mass values below 1280 and 1130 GeV, respectively, are excluded.

19 data tables

The $S_{\rm T}$ distribution for group A before fitting.

The $S_{\rm T}$ distribution for group B before fitting.

The $S_{\rm T}$ distribution for group C before fitting.

More…

Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 121803, 2019.
Inspire Record 1704939 DOI 10.17182/hepdata.89935

This Letter describes a search for Higgs boson pair production using the combined results from four final states: bbγγ, bbττ, bbbb, and bbVV, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at s=13  TeV, corresponding to an integrated luminosity of 35.9  fb-1. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250–3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.

10 data tables

Expected and observed 95\% \CL exclusion limits on the HH production cross section as a function of the k_lambda parameter.

Expected and observed 95\% \CL exclusion limits on the production of a narrow, spin zero resonance (X) decaying into a pair of Higgs bosons.

Expected and observed 95\% \CL exclusion limits on the HH production cross section for the different channels and their combination for each benchmark model.

More…

Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D99 (2019) 032011, 2019.
Inspire Record 1704319 DOI 10.17182/hepdata.88880

A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9  fb-1. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or R-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300–2400 GeV and top squark masses up to 1350–1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.

18 data tables

The distributions of vertex track multiplicity for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.

The distributions of vertex $L_{xy}$ significance for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9 \mathrm{fb}^{-1} = 1 \times 10^{6}$.

The distributions of cluster RMS for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.

More…

Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s}=$ 13 TeV using events containing two leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1902 (2019) 149, 2019.
Inspire Record 1703993 DOI 10.17182/hepdata.89307

Measurements of differential top quark pair $ \mathrm{t}\overline{\mathrm{t}} $ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{−1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $ \mathrm{t}\overline{\mathrm{t}} $ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $ \mathrm{t}\overline{\mathrm{t}} $ and leptonic charge asymmetries.

188 data tables

Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$.

More…

Event shape variables measured using multijet final states in proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1812 (2018) 117, 2018.
Inspire Record 1701612 DOI 10.17182/hepdata.86517

The study of global event shape variables can provide sensitive tests of predictions for multijet production in proton-proton collisions. This paper presents a study of several event shape variables calculated using jet four momenta in proton-proton collisions at a centre-of-mass energy of 13 TeV and uses data recorded with the CMS detector at the LHC corresponding to an integrated luminosity of 2.2 fb$^{−1}$. After correcting for detector effects, the resulting distributions are compared with several theoretical predictions. The agreement generally improves as the energy, represented by the average transverse momentum of the two leading jets, increases.

32 data tables

Normalized differential distributions of unfolded data for $\tau_{\perp}$ for $73 < H_{T,2} < 93$ GeV

Normalized differential distributions of unfolded data for $\tau_{\perp}$ for $93 < H_{T,2} < 165$ GeV

Normalized differential distributions of unfolded data for $\tau_{\perp}$ for $165 < H_{T,2} < 225$ GeV

More…

Search for nonresonant Higgs boson pair production in the $\mathrm{b\overline{b}b\overline{b}}$ final state at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1904 (2019) 112, 2019.
Inspire Record 1700771 DOI 10.17182/hepdata.89407

Results of a search for nonresonant production of Higgs boson pairs, with each Higgs boson decaying to a $\mathrm{b\overline{b}}$ pair are presented. This search uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, collected by the CMS detector at the LHC. No signal is observed, and a 95% confidence level upper limit of 847 fb is set on the cross section for standard model nonresonant Higgs boson pair production times the squared branching fraction of the Higgs boson decay to a $\mathrm{b\overline{b}}$ pair. The same signature is studied, and upper limits are set, in the context of models of physics beyond the standard model that predict modified couplings of the Higgs boson.

2 data tables

The observed and expected upper limits at 95% CL on the $\sigma$ (pp $\Rightarrow$ HH $\Rightarrow$ bbbb) cross section for SM and the 13 BSM models investigated.

95% CL cross section limits on $\sigma$ (pp $\Rightarrow$ HH $\Rightarrow$ bbbb) for values of $\kappa_\lambda$ in the [-20,20] range, assuming $\kappa_t = 1$; the theoretical prediction with $\kappa_t = 1$ is also shown.


Search for new particles decaying to a jet and an emerging jet

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1902 (2019) 179, 2019.
Inspire Record 1700173 DOI 10.17182/hepdata.88380

A search is performed for events consistent with the pair production of a new heavy particle that acts as a mediator between a dark sector and normal matter, and that decays to a light quark and a new fermion called a dark quark. The search is based on data corresponding to an integrated luminosity of 16.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC in 2016. The dark quark is charged only under a new quantum-chromodynamics-like force, and forms an "emerging jet" via a parton shower, containing long-lived dark hadrons that give rise to displaced vertices when decaying to standard model hadrons. The data are consistent with the expectation from standard model processes. Limits are set at 95% confidence level excluding dark pion decay lengths between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV. Decay lengths smaller than 5 mm and greater than 225 mm are also excluded in the lower part of this mass range. The dependence of the limit on the dark pion mass is weak for masses between 1 and 10 GeV. This analysis is the first dedicated search for the pair production of a new particle that decays to a jet and an emerging jet.

10 data tables

Distributions of $\langle IP_{\mathrm{2D}}\rangle$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion proper decay length of 25 mm, for various dark pion masses.

Distributions of $\alpha_\mathrm{3D}$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion mass of 5 GeV for dark pion proper decay lengths ranging from 1 to 300 mm.

The signal acceptance A, defined as the fraction of simulated signal events passing the selection criteria, for models with a dark pion mass $m_{\pi_\mathrm{DK}}$ of 5 GeV as a function of the mediator mass $m_{\mathrm{X_{DK}}}$ and the dark pion proper decay length $c\tau_{\pi_\mathrm{DK}}$. The corresponding selection set number for each model is indicated as text on the plot.

More…

Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2018.
Inspire Record 1697570 DOI 10.17182/hepdata.85767

A search for the pair production of heavy fermionic partners of the top quark with charge 5/3 (X$_{5/3}$) is performed in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The X$_{5/3}$ quark is assumed always to decay into a top quark and a W boson. Both the right-handed and left-handed X$_{5/3}$ couplings to the W boson are considered. Final states with either a pair of same-sign leptons or a single lepton are studied. No significant excess of events is observed above the expected standard model background. Lower limits at 95% confidence level on the X$_{5/3}$ quark mass are set at 1.33 and 1.30 TeV respectively for the case of right-handed and left-handed couplings to W bosons in a combination of the same-sign dilepton and single-lepton final states.

19 data tables

Summary of yields from simulated prompt same-sign dilepton (SSP MC), same-sign nonprompt (Nonprompt), and opposite-sign prompt (ChargeMisID) backgrounds after the full analysis selection. Also shown are the number of expected events for an RH $X_{5/3}$ particle with a mass of 1 TeV. The uncertainties include both statistical and all systematic components (as described in Section 8). The number of events and uncertainties correspond to the background- only fit to data for the background, while for the signal they are based on the yields before the fit to data.

Distributions of $\min[M(\ell,\mathrm{b})]$ in the $\mathrm{t\overline{t}}$ control region, for 1 b-tagged jet category. Example signal distributions are also shown. The background distributions correspond to background-only fit to data while signal distributions are before the fit to data. Electron and muon event samples are combined. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.

Distributions of $\min[M(\ell,\mathrm{b})]$ in the $\mathrm{t\overline{t}}$ control region, for 2 or more b-tagged jet category. Example signal distributions are also shown. The background distributions correspond to background-only fit to data while signal distributions are before the fit to data. Electron and muon event samples are combined. The last bin includes overflow events and its content is divided by the bin width. The distributions in each category have variable-size bins, chosen so that the statistical uncertainty in the total background in each bin is less than 30%. The lower panel in each plot shows the difference between the observed and the predicted numbers of events in that bin divided by the total uncertainty. The total uncertainty is calculated as the sum in quadrature of the statistical uncertainty in the observed measurement and the statistical and systematic uncertainties in the background-only fit to data.

More…

Measurement of B$^0_\mathrm{s}$ meson production in pp and PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett., 2018.
Inspire Record 1697571 DOI 10.17182/hepdata.85629

The production cross sections of B$^0_\mathrm{s}$ mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B$^0_\mathrm{s}\to J/\psi \phi \to\mu^+\mu^-$K$^+$K$^-$ at a centre-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range $|y|\lt$ 2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p$_\mathrm{T}$) of the B$^0_\mathrm{s}$ meson in the range of 7 to 50 GeV/$c$ and is compared to the predictions of perturbative QCD calculations. The B$^0_\mathrm{s}$ production yield in PbPb collisions is measured in two p$_\mathrm{T}$ intervals, 7 to 15 and 15 to 50 GeV/$c$, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor ($R_\mathrm{AA}$) is found to be 1.5 $\pm$ 0.6 (stat) $\pm$ 0.5 (syst) for 7-15 GeV/$c$, and 0.87 $\pm$ 0.30 (stat) $\pm$ 0.17 (syst) for 15-50 GeV/$c$, respectively. Within current uncertainties, the results are consistent with models of strangeness enhancement and a suppression as observed for the B$^+$ mesons.

5 data tables

The $B^{0}_{s}$ p$_T$-differential production cross section in pp collisions at $\sqrt(s_{_{NN}})=5.02$TeV, in three p$_T$ intervals from 7 to 50GeV/c. The global systematic uncertainty, not included in the point-to-point uncertainties, comprises the uncertainties in the integrated luminosity measurment and the branching fraction.

The $B^{0}_{s}$ p$_T$-differential production cross section in pp collisions at $\sqrt(s_{_{NN}})=5.02$TeV, in two p$_T$ intervals from 7 to 50GeV/c. The global systematic uncertainty, not included in the point-to-point uncertainties, comprises the uncertainties in the integrated luminosity measurment and the branching fraction.

The $B^{0}_{s}$ p$_T$-differential yield scaled by $\rm{T_{AA}}$ in PbPb collisions at $\sqrt(s_{_{NN}})=5.02$TeV, in two p$_T$ intervals from 7 to 50GeV/c. The global systematic uncertainty, not included in the point-to-point uncertainties, comprises the uncertainties in $\rm{T_{AA}}$, N$_{MB}$, and the branching fraction.

More…

Jet shapes of isolated photon-tagged jets in PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett., 2018.
Inspire Record 1695278 DOI 10.17182/hepdata.85627

We report the first measurement of jet shapes for jets tagged with an isolated photon in pp and heavy-ion collisions. Jet shapes give crucial information on the evolution of parton shower in the plane transverse to parton's propagation. Photons constrain the associated parton's flavor and, not interacting with the QCD matter, provide precise information about the parton's momentum before traversing the medium. With this experimental control, available only with samples delivered by the LHC, jet shapes are observed to be strongly modified in the hot QCD medium, the results impose unprecedented constraints on theories for parton-medium interactions.

9 data tables

The differential jet shape, $\rho(r)$, for jets associated with an isolated photon in pp collisions.

The differential jet shape, $\rho(r)$, for jets associated with an isolated photon in 50-100% centrality PbPb collisions.

The differential jet shape, $\rho(r)$, for jets associated with an isolated photon in 30-50% centrality PbPb collisions.

More…

Search for leptoquarks coupled to third-generation quarks in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 241802, 2018.
Inspire Record 1694381 DOI 10.17182/hepdata.85765

Three of the most significant measured deviations from standard model predictions, the enhanced decay rate for B→D(*)τν, hints of lepton universality violation in B→K(*)ℓℓ decays, and the anomalous magnetic moment of the muon, can be explained by the existence of leptoquarks (LQs) with large couplings to third-generation quarks and masses at the TeV scale. The existence of these states can be probed at the LHC in high energy proton-proton collisions. A novel search is presented for pair production of LQs coupled to a top quark and a muon using data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb-1, recorded by the CMS experiment. No deviation from the standard model prediction has been observed and scalar LQs decaying exclusively into tμ are excluded up to masses of 1420 GeV. The results of this search are combined with those from previous searches for LQ decays into tτ and bν, which excluded scalar LQs below masses of 900 and 1080 GeV. Vector LQs are excluded up to masses of 1190 GeV for all possible combinations of branching fractions to tμ, tτ and bν. With this analysis, all relevant couplings of LQs with an electric charge of -1/3 to third-generation quarks are probed for the first time.

6 data tables

Distributions for $M_{LQ}^{rec}$ (category A) after applying the full selection. All backgrounds are normalized according to the post-fit nuisance parameters based on the corresponding SM cross sections.

Distributions for $S_{T}$ (category B) after applying the full selection and estimating the $t\overline{t}$ and DY+jets background contributions from data in category B. All backgrounds are normalized according to the post-fit nuisance parameters based on the corresponding SM cross sections.

Observed upper limits on the production cross section for pair production of LQs decaying into a top quark and a muon or a $\tau$ lepton at 95% CL in the $M_{LQ} - B(LQ \rightarrow t\mu)$ plane.

More…

Studies of ${\mathrm {B}} ^{*{\mathrm {s}}2}(5840)^0 $ and ${\mathrm {B}} _{{\mathrm {s}}1}(5830)^0 $ mesons including the observation of the ${\mathrm {B}} ^{*{\mathrm {s}}2}(5840)^0 \rightarrow {\mathrm {B}} ^0 \mathrm {K} ^0_{\mathrm {S}} $ decay in proton-proton collisions at $\sqrt{s}=8\,\text {TeV} $

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C78 (2018) 939, 2018.
Inspire Record 1693614 DOI 10.17182/hepdata.85740

Measurements of $\mathrm{B}^*_\mathrm{s2}(5840)^0$ and $\mathrm{B}_\mathrm{s1}(5830)^0$ mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.6 fb$^{-1}$, collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV. The analysis studies $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson decays into $\mathrm{B}^{(*)+}\mathrm{K}^-$ and $\mathrm{B}^{(*)0}\mathrm{K}^0_\mathrm{S}$, where the $\mathrm{B}^+$ and $\mathrm{B}^0$ mesons are identified using the decays $\mathrm{B}^+\to\mathrm{J}/\psi\,\mathrm{K}^+$ and $\mathrm{B}^0\to\mathrm{J}/\psi\,\mathrm{K}^*(892)^0$. The masses of the $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson states are measured and the natural width of the $\mathrm{B}^*_\mathrm{s2}(5840)^0$ state is determined. The first measurement of the mass difference between the charged and neutral $\mathrm{B}^*$ mesons is also presented. The $\mathrm{B}^*_\mathrm{s2}(5840)^0$ decay to $\mathrm{B}^0\mathrm{K}^0_\mathrm{S}$ is observed, together with a measurement of its branching fraction relative to the $\mathrm{B}^*_\mathrm{s2}(5840)^0\to\mathrm{B}^+\mathrm{K}^-$ decay.

12 data tables

The $\mathrm{J}/\psi\mathrm{K}^+$ invariant mass distribution in data

The $\mathrm{J}/\psi\mathrm{K}^{*0}$ invariant mass distribution in data

The $\mathrm{B}^+\pi^-$ invariant mass distribution of the selected candidates in data

More…

Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV via Higgs boson decays to $\tau$ leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2018.
Inspire Record 1693616 DOI 10.17182/hepdata.87257

A search for the standard model Higgs boson, decaying to a pair of $\tau$ leptons and produced in association with a W or a Z boson is performed. A data sample of proton-proton collisions collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The signal strength is measured relative to the expectation for the standard model Higgs boson, yielding $\mu =$ 2.5$^{+1.4} _{-1.3}$. These results are combined with earlier CMS measurements targeting Higgs boson decays to a pair of $\tau$ leptons, performed with the same data set in the gluon fusion and vector boson fusion production modes. The combined signal strength is $\mu =$ 1.24$ ^{+0.29} _{-0.27}$ (1.00$^{+0.24} _{-0.23}$ expected), and the observed significance is 5.5 standard deviations (4.8 expected) for a Higgs boson mass of 125 GeV.

1 data table

Best fit signal strength per production mode, for mH = 125.09 GeV. The constraints from the global fit are used to extract each of the individual best fit signal strengths. The VH analyses are combined with the ggH and VBF analysis.


Charged-particle nuclear modification factors in XeXe collisions at $ \sqrt{s_{\mathrm{NN}}} = 5.44 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1810 (2018) 138, 2018.
Inspire Record 1692558 DOI 10.17182/hepdata.85626

The differential yields of charged particles having pseudorapidity within |η| < 1 are measured using xenon-xenon (XeXe) collisions at $ \sqrt{s_{\mathrm{NN}}} = 5.44 $ TeV. The data, corresponding to an integrated luminosity of 3.42 μb$^{−1}$, were collected in 2017 by the CMS experiment at the LHC. The yields are reported as functions of collision centrality and transverse momentum, p$_{T}$, from 0.5 to 100 GeV. A previously reported p$_{T}$ spectrum from proton-proton collisions at $ \sqrt{s}=5.02 $ TeV is used for comparison after correcting for the difference in center-of-mass energy. The nuclear modification factors using this reference, R$_{AA}^{*}$ , are constructed and compared to previous measurements and theoretical predictions. In head-on collisions, the R$_{AA}^{*}$ has a value of 0.17 in the p$_{T}$ range of 6–8 GeV, but increases to approximately 0.7 at 100 GeV. Above ≈6 GeV, the XeXe data show a notably smaller suppression than previous results for lead-lead (PbPb) collisions at $ \sqrt{s_{\mathrm{NN}}}=5.02 $ TeV when compared at the same centrality (i.e., the same fraction of total cross section). However, the XeXe suppression is slightly greater than that for PbPb in events having a similar number of participating nucleons.

10 data tables

The per-event differential invariant yield of charged particles having |eta|<1 in XeXe collisions at sqrt(s_NN)=5.44 TeV. The first systematic uncertainty describes uncertainties that are not fully correlated across points, while the second systematic uncertainty is a normalization uncertainty that is fully correlated across all points. Bins where no data point has been reported are denoted as 'empty'.

The per-event differential invariant yield of charged particles having |eta|<1 in pp collisions at sqrt(s)=5.44 TeV, after extrpolation from 5.02 TeV data. The first systematic uncertainty describes uncertainties that are not fully correlated across points, while the second systematic uncertainty is a normalization uncertainty that is fully correlated across all points. The data is measured and extrapolated as a differential cross section, and transformed into a differential yield using an inelastic cross-section of 70 mb.

The nuclear modification factor of charged particles having |eta|<1 in XeXe collisions at sqrt(s_NN)=5.44 TeV. The first systematic uncertainty describes uncertainties that are not fully correlated across points, while the second systematic uncertainty is a normalization uncertainty that is fully correlated across all points. Bins where no data point has been reported are denoted as 'empty'.

More…