Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 061801, 2023.
Inspire Record 2080007 DOI 10.17182/hepdata.128675

A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H $\to$$\mathrm{c\bar{c}}$, produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z $\to$$\mathrm{c\bar{c}}$ in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on $\sigma$(VH)$ \mathcal{B}$(H $\to$$\mathrm{c\bar{c}}$) is 0.94 (0.50 $^{+0.22}_{-0.15}$) pb at 95% confidence level (CL), corresponding to 14 (7.6 $^{+3.4}_{-2.3}$) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, $\kappa_\mathrm{c}$, the observed (expected) 95% CL interval is 1.1 $\lt$ $\vert\kappa_\mathrm{C}\vert$ $\lt$ 5.5 ($\vert\kappa_\mathrm{c}\vert$ $\lt$ 3.4), the most stringent constraint to date.

3 data tables

Signal strength modifier $\mu_{VZ(Z\to c \bar{c})}$, where V = W or Z.

Signal strength modifiers $\mu_{VH(H\to c \bar{c})}$, where V = W or Z.

Upper limits at 95% CL on the signal strength modifier $\mu_{VH(H\to c \bar{c})}$, per analysis channel and combined.


Version 2
Search for long-lived particles decaying to a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 228, 2023.
Inspire Record 2083735 DOI 10.17182/hepdata.129518

An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.

150 data tables

Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.

Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.

Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Observation of same-sign WW production from double parton scattering in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 091803, 2023.
Inspire Record 2091619 DOI 10.17182/hepdata.130562

The first observation of the production of W$^\pm$W$^\pm$ bosons from double parton scattering processes using same-sign electron-muon and dimuon events in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ recorded at a center-of-mass energy of 13 TeV using the CMS detector at the CERN LHC. Multivariate discriminants are used to distinguish the signal process from the main backgrounds. A binned maximum likelihood fit is performed to extract the signal cross section. The measured cross section for production of same-sign W bosons decaying leptonically is 80.7 $\pm$ 11.2 (stat) $^{+9.5}_{-8.6}$ (syst) $\pm$ 12.1 (model) fb, whereas the measured fiducial cross section is 6.28 $\pm$ 0.81 (stat) $\pm$ 0.69 (syst) $\pm$ 0.37 (model) fb. The observed significance of the signal is 6.2 standard deviations above the background-only hypothesis.

2 data tables

Measured values of inclusive and fiducial cross section for same-sign WW bosons via DPS

Effective DPS cross section paramater


Version 2
Observation of $\tau$ lepton pair production in ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 151803, 2023.
Inspire Record 2094321 DOI 10.17182/hepdata.129600

We present an observation of photon-photon production of $\tau$ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 $\mu$b$^{-1}$ collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The $\gamma\gamma$$\to$$\tau^+\tau^-$ process is observed for $\tau\tau$ events with a muon and three charged hadrons in the final state. The measured fiducial cross section is $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$ = 4.8 $\pm$ 0.6 (stat) $\pm$ 0.5 (syst) $\mu$b, in agreement with leading-order QED predictions. Using $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$, we estimate a model-dependent value of the anomalous magnetic moment of the $\tau$ lepton of $a_\tau$ = 0.001 $^{+0.055}_{-0.089}$.

4 data tables

$\gamma\gamma\to\tau\tau$ fiducial cross section

$\gamma\gamma\to\tau\tau$ fiducial cross section

Limits on anomalous magnetic moment of the tau lepton

More…

Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 667, 2023.
Inspire Record 2098239 DOI 10.17182/hepdata.130966

Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016-2018 is used, corresponding to an integrated luminosity of 138 fb$^{-1}$. The signal strength modifier $\mu$, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be $\mu$ = 0.95 $^{+0.10}_{-0.09}$. All results are found to be compatible with the standard model within the uncertainties.

7 data tables

Results of likelihood scans for the signal strength modifiers corresponding to the four main SM H boson production mechanisms. The uncertainties, corresponding to one standard deviation confidence intervals, include both statistical and systematic sources. The additional breakdown of the uncertainties into their separate statistical and systematic contributions is also shown

Correlation matrix of the signal strength modifiers corresponding to the four main SM H boson production mechanisms.

Profile likelihood as a function of the overall HWW signal strength modifier, considering all uncertainties

More…

Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137531, 2023.
Inspire Record 2098240 DOI 10.17182/hepdata.130957

A search for the nonresonant production of Higgs boson pairs (HH) via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two tau leptons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events in which at least one tau lepton decays hadronically are considered and multiple machine learning techniques are used to identify and extract the signal. The data are found to be consistent, within uncertainties, with the standard model (SM) predictions. Upper limits on the HH production cross section are set to constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to 3.3 (5.2) times the SM prediction for the inclusive HH cross section and to 124 (154) times the SM prediction for the vector boson fusion HH cross section. At 95% confidence level, the Higgs field self-coupling is constrained to be within -1.7 and 8.7 times the SM expectation, and the coupling of two Higgs bosons to two vector bosons is constrained to be within -0.4 and 2.6 times the SM expectation.

2 data tables

Exclusion limits on the product of the production cross section and the branching fraction for non resonant SM-like HH decaying to 4lbb, as a function of the klamda hypothesis. The green and yellow bands represent, respectively, the one and two standard deviation (s.d.) quantiles around the expected limit.

Upper limit on the signal strength at 95% CL for each year and for their combination. The green and yellow bands represent, respectively, the one and two standard deviation (s.d.) quantiles around the expected limit.


Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 161, 2023.
Inspire Record 2098256 DOI 10.17182/hepdata.130817

A search for pairs of dijet resonances with the same mass is conducted in final states with at least four jets. Results are presented separately for the case where the four jet production proceeds via an intermediate resonant state and for nonresonant production. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS detector in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Model-independent limits, at 95% confidence level, are reported on the production cross section of four-jet and dijet resonances. These first LHC limits on resonant pair production of dijet resonances via high mass intermediate states are applied to a signal model of diquarks that decay into pairs of vector-like quarks, excluding diquark masses below 7.6 TeV for a particular model scenario. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. The nonresonant search excludes pair production of top squarks with masses between 0.50 TeV to 0.77 TeV, with the exception of a small interval between 0.52 and 0.58 TeV, for supersymmetric $R$-parity-violating decays to quark pairs, significantly extending previous limits. Here, the most significant excess above the predicted background occurs at an average dijet mass of 0.95 TeV, for which the local and global significances are 3.6 and 2.5 standard deviations, respectively.

19 data tables

The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.11$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.

The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.13$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.

The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.15$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.

More…

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

22 data tables

Inclusive signal strength modifiers $\mu$.

Signal strength modifiers per production mode $\mu_i$.

Signal strength modifiers per decay mode $\mu^f$.

More…