Dependence of inclusive jet production on the anti-$k_\mathrm{T}$ distance parameter in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-19-003 (CMS Public Pages), 2020.
Inspire Record 1795080 DOI 10.17182/hepdata.95241

The dependence of inclusive jet production in proton-proton collisions with a center-of-mass energy of 13 TeV on the distance parameter $R$ of the anti-$k_\mathrm{T}$ algorithm is studied using data corresponding to integrated luminosities up to 35.9 fb$^{-1}$ collected by the CMS experiment in 2016. The ratios of the inclusive cross sections as functions of transverse momentum $p_\mathrm{T}$ and rapidity $y$, for $R$ in the range 0.1 to 1.2 to those using $R=$ 0.4 are presented in the region 84 $\lt p_\mathrm{T} \lt$ 1588 GeV and $|y|\lt$ 2.0. The results are compared to calculations at leading and next-to-leading order in the strong coupling constant using different parton shower models. The variation of the ratio of cross sections with $R$ is well described by calculations including a parton shower model, but not by a leading-order quantum chromodynamics calculation including nonperturbative effects. The agreement between the data and the theoretical predictions for the ratios of cross sections is significantly improved when next-to-leading order calculations with nonperturbative effects are used.

88 data tables

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range |y|<0.5. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range 0.5<|y|<1.0. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range 1.0<|y|<1.5. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

More…

Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic couplings

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 076, 2020.
Inspire Record 1781935 DOI 10.17182/hepdata.93069

A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Z$\gamma$jj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Z$\gamma$jj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at $\sqrt{s} =$ 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Z$\gamma$jj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.

3 data tables

The measured EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

The measured combined QCD-induced and EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

aQGC limits on effective field theory parameters in EWK Zgamma events


A measurement of the Higgs boson mass in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135425, 2020.
Inspire Record 1780985 DOI 10.17182/hepdata.93362

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.

1 data table

A summary of the mass of the Higgs boson measured in the H to GG and the H to ZZ to 4l decay channel, and for the combination of the two. These measurements have been carried out with the Run 1 and 2016 datasets as well as with them combined.


Measurement of the $\Upsilon$(1S) pair production cross section and search for resonances decaying to $\Upsilon$(1S)$\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 808 (2020) 135578, 2020.
Inspire Record 1780982 DOI 10.17182/hepdata.93921

The fiducial cross section for $\Upsilon$(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both $\Upsilon$(1S) mesons have an absolute rapidity below 2.0 is measured to be 79 $\pm$ 11 (stat) $\pm$ 6 (syst) $\pm$ 3 ($\mathcal{B}$) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the $\Upsilon$(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. This process serves as a standard model reference in a search for narrow resonances decaying to $\Upsilon$(1S)$\mu^+\mu^-$ in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two $\bar{\mathrm{b}}$ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate $\Upsilon$(1S) resonance are set as a function of the resonance mass.

9 data tables

The fiducial cross section measured in bins of the absolute rapidity difference between the mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

The fiducial cross section measured in bins of the invariant mass of the two mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

The fiducial cross section measured in bins of the transverse momentum of the meson pair for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

More…

Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $ \sqrt{s} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2020) 126, 2020.
Inspire Record 1777308 DOI 10.17182/hepdata.93014

A search for charged Higgs bosons (H$^\pm$) decaying into a top and a bottom quark in the all-jet final states is presented. The analysis uses LHC proton-proton collision data recorded with the CMS detector in 2016 at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess is observed above the expected background. Model-independent upper limits at 95% confidence level are set on the product of the H$^\pm$ production cross section and branching fraction in two scenarios. For production in association with a top quark, limits of 21.3 to 0.007 pb are obtained for H$^\pm$ masses in the range of 0.2 to 3 TeV. Combining this with data from a search in leptonic final states results in improved limits of 9.25 to 0.005 pb. The complementary $s$-channel production of an H$^\pm$ is investigated in the mass range of 0.8 to 3 TeV and the corresponding upper limits are 4.5 to 0.023 pb. These results are interpreted using different minimal supersymmetric extensions of the standard model.

3 data tables

The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair.

The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair for s-channel production in the boosted regime.

The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair for the associated production (fully hadronic).


Measurement of the $CP$ violating phase $\phi_{\text{s}}$ in the $\mathrm{B}_s \to \mathrm{J}/\psi\,\phi(1020) \to \mu^+\mu^-\,\mathrm{K}^+\mathrm{K}^-$ channel in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$

The CMS collaboration
2020.
Inspire Record 1789136 DOI 10.17182/hepdata.95676

The $CP$ violating weak phase $\phi_{\text{s}}$, and the decay width difference $\Delta\Gamma_{\text{s}}$ between the light and heavy $\mathrm{B_s}$ mass eigenstates are measured with the CMS detector at the LHC in a sample of reconstructed $\mathrm{B}_s \to \mathrm{J}/\psi\,\phi(1020) \to \mu^+\mu^-\,\mathrm{K}^+\mathrm{K}^-$ decays. The measurement is based on a data set corresponding to an integrated luminosity of $96.4\;\mathrm{fb}^{-1}$, collected in proton-proton collisions at a center-of-mass energy of $13\;\mathrm{TeV}$ in 2017-2018. To extract the values of $\phi_{\text{s}}$ and $\Delta\Gamma_{\text{s}}$, a time-dependent and flavor-tagged angular analysis of the $\mu^+\mu^-\,\mathrm{K}^+\mathrm{K}^-$ final state is performed. The analysis employs a novel opposite-side muon flavor tagger based on machine learning techniques, which, in conjunction with a dedicated tagging trigger, allowed to reach an unprecedented tagging power. The measurement yields $\phi_{\text{s}} = -0.011 \pm 0.050\,\mathrm{(stat)} \pm 0.010\,\mathrm{(syst)}\;\mathrm{rad}$, and $\Delta\Gamma_{\text{s}} = 0.114 \pm 0.014\,\mathrm{(stat)} \pm 0.007\,\mathrm{(syst)}\;\mathrm{ps}^{-1}$, in agreement with the standard model predictions. When combined with our previous measurement at a center-of-mass energy of 8 TeV, the following values are obtained: $\phi_{\text{s}} = -0.021 \pm 0.045\;\mathrm{rad}$, $\Delta\Gamma_{\text{s}} = 0.1074 \pm 0.0097\;\mathrm{ps}^{-1}$, a significant improvement over the 8 TeV result.

4 data tables

Results of the fit to data. Statistical uncertainties are obtained from the increase in $-\log{\mathcal{L}}$ by 0.5.

Values of parameter obtained combining the 13 TeV results with those obtained at 8 TeV. Uncertainties are both statistical and systematic.

Statistical error correlation matrix of the physics parameters of interest, as obtained from the fit to data at 13 TeV.

More…

Relative cross sections of the ${\rm B_c^+(2S)}$ and ${\rm B_c^{*+}(2S)}$ states with respect to the ${\rm B_c^+}$ state in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS collaboration
CMS-PAS-BPH-19-001, 2020.
Inspire Record 1797810 DOI 10.17182/hepdata.94835

The ${\rm B_c^+(2S)}$ to ${\rm B_c^+}$ and ${\rm B_c^{*+}(2S)}$ to ${\rm B_c^+}$ cross section ratios, as well as the ${\rm B_c^{*+}(2S)}$ to ${\rm B_c^+(2S)}$ cross section ratio, are measured in proton-proton collisions at $\sqrt{s} = 13$ TeV, using a data sample collected by the CMS experiment, corresponding to an integrated luminosity of 143 fb$^{-1}$. The three measurements are made in the ${\rm B_c^+}$ phase space window defined by transverse momentum $p_{\rm T} > 15$ GeV and absolute rapidity $|y| < 2.4$, with the excited ${\rm B_c^{(*)+}(2S)}$ states reconstructed in their ${\rm B_c^+} \pi^+ \pi^-$ decay. The ${\rm B_c^+(2S)}$ to ${\rm B_c^+}$, ${\rm B_c^{*+}(2S)}$ to ${\rm B_c^+}$, and ${\rm B_c^{*+}(2S)}$ to ${\rm B_c^+(2S)}$ cross section ratios, including the (unknown) ${\rm B_c^{(*)+}(2S) \to B_c^+}\pi^+\pi^-$ branching fractions, are ${\rm (3.57 \pm 0.69~(stat) \pm 0.32~(syst))\,\%}$, ${\rm (4.91 \pm 0.69~(stat) \pm 0.57~(syst))\,\%}$, and ${\rm 1.39 \pm 0.35~(stat) \pm 0.09~(syst)}$, respectively, where the first uncertainty is statistical and the second is systematic. None of these ratios shows a significant dependence on the $p_{\rm T}$ or $|y|$ of the ${\rm B_c^+}$. The shape of the invariant mass distribution of the dipions emitted in the ${\rm B_c^{(*)+}(2S) \to B_c^+}\pi^+\pi^-$ decays is also reported.

5 data tables

Relative cross sections of the Bc(2S) and Bc(2S)* states with respect to the Bc.

Invariant mass distribution of the dipion system.

Invariant mass distribution of the dipion system.

More…

Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at $ \sqrt{s} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 146, 2020.
Inspire Record 1772050 DOI 10.17182/hepdata.95469

The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric ($\hat{d}_\mathrm{t}$) and chromomagnetic ($\hat{\mu}_\mathrm{t}$) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The linearized variable $A_\mathrm{FB}^{(1)}$ is used to approximate the asymmetry. Candidate $\mathrm{t\bar{t}}$ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for $\mathrm{t\bar{t}}$ final states. The values found for the parameters are $A_\mathrm{FB}^{(1)} =$ 0.048 $^{+0.095}_{-0.087}$ (stat) $^{+0.020}_{-0.029}$ (syst), $\hat{\mu}_\mathrm{t} =-$ 0.024 $^{+0.013}_{-0.009}$ (stat) $^{+0.016}_{-0.011}$ (syst), and a limit is placed on the magnitude of $|\hat{d}_\mathrm{t}|$ $<$ 0.03 at 95% confidence level.

3 data tables

Linearized top quark forward-backward production asymmetry $A_{FB}^{(1)}$

Top quark anomalous chromomagnetic dipole moment $\hat{\mu}_{t}$

Top quark anomalous chromoelectric dipole moment $\hat{d}_{t}$


Measurement of the top quark pair production cross section in dilepton final states containing one $\tau$ lepton in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2020) 191, 2020.
Inspire Record 1767671 DOI 10.17182/hepdata.93743

The cross section of top quark pair production is measured in the $\mathrm{t\bar{t}}\to (\ell\nu_{\ell})(\tau_\mathrm{h}\nu_{\tau})\mathrm{b\bar{b}}$ final state, where $\tau_\mathrm{h}$ refers to the hadronic decays of the $\tau$ lepton, and $\ell$ is either an electron or a muon. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}=$ 13 TeV with the CMS detector. The measured cross section is $\sigma_{\mathrm{t\bar{t}}} =$ 781 $\pm$ 7 (stat) $\pm$ 62 (syst) $\pm$ 20 (lum) pb, and the ratio of the partial width $\Gamma($t$\to\tau\nu_{\tau}$b) to the total decay width of the top quark is measured to be 0.1050 $\pm$ 0.0009 (stat) $\pm$ 0.0071 (syst). This is the first measurement of the $\mathrm{t\bar{t}}$ production cross section in proton-proton collisions at $\sqrt{s}=$ 13 TeV that explicitly includes $\tau$ leptons. The ratio of the cross sections in the $\ell\tau_\mathrm{h}$ and $\ell\ell$ final states yields a value $R_{\ell\tau_\mathrm{h}/\ell\ell}=$ 0.973 $\pm$ 0.009 (stat) $\pm$ 0.066 (syst), consistent with lepton universality.

3 data tables

The measured inclusive top quark pair production cross section in the dilepton final state with one tau lepton.

The ratio between top quark production cross sections measured in lepton-tau and light dilepton final states.

The ratio of the partial width to the total decay width of the top quark.


Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 051, 2020.
Inspire Record 1764474 DOI 10.17182/hepdata.91969

A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.

58 data tables

The $M_{T}$ distribution in the WZ-enriched region. The last bin contains the overflow events.

The $L_{T}$ distribution in the ttZ-enriched region. The last bin contains the overflow events.

The $S_{T}$ distribution in the ZZ-enriched region. The last bin contains the overflow events.

More…

Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2020) 033, 2020.
Inspire Record 1764471 DOI 10.17182/hepdata.91059

A search for narrow and broad resonances with masses greater than 1.8 TeV decaying to a pair of jets is presented. The search uses proton-proton collision data at $\sqrt{s} =$ 13 TeV collected at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The background arising from standard model processes is predicted with the fit method used in previous publications and with a new method. The dijet invariant mass spectrum is well described by both data-driven methods, and no significant evidence for the production of new particles is observed. Model independent upper limits are reported on the production cross sections of narrow resonances, and broad resonances with widths up to 55% of the resonance mass. Limits are presented on the masses of narrow resonances from various models: string resonances, scalar diquarks, axigluons, colorons, excited quarks, color-octet scalars, W' and Z' bosons, Randall-Sundrum gravitons, and dark matter mediators. The limits on narrow resonances are improved by 200 to 800 GeV relative to those reported in previous CMS dijet resonance searches. The limits on dark matter mediators are presented as a function of the resonance mass and width, and on the associated coupling strength as a function of the mediator mass. These limits exclude at 95% confidence level a dark matter mediator with a mass of 1.8 TeV and width 1% of its mass or higher, up to one with a mass of 4.8 TeV and a width 45% of its mass or higher.

10 data tables

The observed and expected 95% CL upper limits on the universal quark coupling $g_{q}$ as a function of resonance mass for a vector mediator of interactions between quarks and dark matter.

The observed and expected 95% CL upper limits on the universal quark coupling $g_{q}^{'}$ as a function of resonance mass for a vector mediator of interactions between quarks.

Observed differential dijet spectrum. The cross-section is calculated by dividing the event yield by the bin width and luminosity.

More…

Search for new neutral Higgs bosons through the H$\to$ ZA $\to \ell^{+}\ell^{-} \mathrm{b\bar{b}}$ process in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 055, 2020.
Inspire Record 1764795 DOI 10.17182/hepdata.90710

This paper reports on a search for an extended scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model.

10 data tables

The dijet mass distribution in data and simulated background events after requiring all the analysis selections, for μμ + ee events. The various signal hypotheses displayed have been scaled to a cross section of 1 pb for display purposes.

The llbb mass distribution in data and simulated background events after requiring all the analysis selections, for μμ + ee events. The various signal hypotheses displayed have been scaled to a cross section of 1 pb for display purposes.

The rho distributions for the same-flavour category events corresponding to a signal hypothesis with mH = 261 GeV and mA = 150 GeV. The signal is normalised to its theoretical cross section.

More…

Observation of the $\Lambda_\mathrm{b}^0 \to$ J/$\psi \Lambda \phi$ decay in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 802 (2020) 135203, 2020.
Inspire Record 1764794 DOI 10.17182/hepdata.93065

The observation of the $\Lambda_\mathrm{b}^0 \to$J/$\psi \Lambda \phi$ decay is reported using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the LHC in 2018, corresponding to an integrated luminosity of 60 fb$^{-1}$. The ratio of the branching fractions $\mathcal{B}(\Lambda_\mathrm{b}^0 \to$J/$\psi \Lambda \phi)/\mathcal{B}(\Lambda_\mathrm{b}^0\to\psi \Lambda)$ is measured to be (8.26$\pm$0.90 (stat) $\pm$ 0.68 (syst) $\pm$ 0.11 $(\mathcal{B}))\times $10$^{-2}$, where the first uncertainty is statistical, the second is systematic, and the last uncertainty reflects the uncertainties in the world-average branching fractions of $\phi$ and $\psi$(2S) decays to the reconstructed final states.

1 data table

The measured ratio of branching fractions


Search for top squark pair production in a final state with two tau leptons in proton-proton collisions at $ \sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2020) 015, 2020.
Inspire Record 1762677 DOI 10.17182/hepdata.90833

A search for pair production of the supersymmetric partner of the top quark, the top squark, in proton-proton collision events at $ \sqrt{s} =$ 13 TeV is presented in a final state containing hadronically decaying tau leptons and large missing transverse momentum. This final state is highly sensitive to high-$\tan{\beta}$ or higgsino-like scenarios in which decays of electroweak gauginos to tau leptons are dominant. The search uses a data set corresponding to an integrated luminosity of 77.2 fb$^{-1}$, which was recorded with the CMS detector during 2016 and 2017. No significant excess is observed with respect to the background prediction. Exclusion limits at 95% confidence level are presented in the top squark and lightest neutralino mass plane within the framework of simplified models, in which top squark masses up to 1100 GeV are excluded for a nearly massless neutralino.

29 data tables

Values of the predicted SM background events from various sources and observed events in each of the 15 signal regions.

Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.25 $).

Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.5 $).

More…

Measurement of the $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135285, 2020.
Inspire Record 1753720 DOI 10.17182/hepdata.91630

A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.

1 data table

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.


Version 2
Measurements of differential Z boson production cross sections in proton-proton collisions at $ \sqrt{s} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2019) 061, 2019.
Inspire Record 1753680 DOI 10.17182/hepdata.91215

Measurements are presented of the differential cross sections for Z bosons produced in proton-proton collisions at $\sqrt{s} =$ 13 TeV and decaying to muons and electrons. The data analyzed were collected in 2016 with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The measured fiducial inclusive product of cross section and branching fraction agrees with next-to-next-to-leading order quantum chromodynamics calculations. Differential cross sections of the transverse momentum $p_\mathrm{T}$, the optimized angular variable $\phi^*_\eta$, and the rapidity of lepton pairs are measured. The data are corrected for detector effects and compared to theoretical predictions using fixed order, resummed, and parton shower calculations. The uncertainties of the measured normalized cross sections are smaller than 0.5% for $\phi^*_\eta <$ 0.5 and for $p_\mathrm{T}^\mathrm{Z} <$ 50 GeV.

105 data tables

Summary of data, expected signal, and background yields after the full selection. The predicted signal yields are quoted using aMC@NLO simulation. The statistical uncertainties in the simulated samples are below 0.1%.

Summary of the systematic uncertainties for the inclusive fiducial cross section measurements.

The measured inclusive fiducial cross sections in the dimuon and dielectron final states. The combined measurement is also shown.

More…

Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at $ \sqrt{\mathrm{s}} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2020) 096, 2020.
Inspire Record 1751230 DOI 10.17182/hepdata.92020

A search is presented for a charged Higgs boson heavier than the top quark, produced in association with a top quark, or with a top and a bottom quark, and decaying into a top-bottom quark-antiquark pair. The search is performed using proton-proton collision data collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Events are selected by the presence of a single isolated charged lepton (electron or muon) or an opposite-sign dilepton (electron or muon) pair, categorized according to the jet multiplicity and the number of jets identified as originating from b quarks. Multivariate analysis techniques are used to enhance the discrimination between signal and background in each category. The data are compatible with the standard model, and 95% confidence level upper limits of 9.6-0.01 pb are set on the charged Higgs boson production cross section times branching fraction to a top-bottom quark-antiquark pair, for charged Higgs boson mass hypotheses ranging from 200 GeV to 3 TeV. The upper limits are interpreted in different minimal supersymmetric extensions of the standard model.

1 data table

The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a top-bottom pair.


Version 2
Search for dark photons in decays of Higgs bosons produced in association with Z bosons in proton-proton collisions at $ \sqrt{s} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2019) 139, 2019.
Inspire Record 1748735 DOI 10.17182/hepdata.89702

A search is presented for a Higgs boson that is produced in association with a Z boson and that decays to an undetected particle together with an isolated photon. The search is performed by the CMS Collaboration at the Large Hadron Collider using a data set corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded at a center-of-mass energy of 13 TeV. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for associated Higgs and Z boson production and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a mass of 125 GeV, assuming the standard model production cross section, this corresponds to an observed (expected) upper limit on this branching fraction of 4.6 (3.6)% at 95% confidence level. These are the first limits on Higgs boson decays to final states that include an undetected massless dark photon.

12 data tables

Observed yields, background estimates after the fit to data, and signal predictions after the event selection in the signal region. The signal size corresponds to $0.1 \sigma_{\mathrm{\mathrm{ZH}}}$ for all three $m_{\mathrm{\mathrm{H}}}$ values shown. The combined statistical and systematic uncertainties are reported.

Expected yields for different processes after several selection stages. The preselection requires two leptons and at least one photon with $\mathrm{p_\mathrm{T}}$ larger than 25, 20, and 25 GeV, respectively; in addition the dilepton $\mathrm{p_\mathrm{T}}$ must be larger than 60 GeV, and the $\mathrm{p_\mathrm{T}}^{\mathrm{miss}}$ larger than 70 GeV. The signal prediction corresponds to $0.1 \sigma_{\mathrm{\mathrm{ZH}}}$ at $m_{H}$ = 125 GeV.

Expected and observed upper limits at 95\% confidence level on the product of $\sigma_{\mathrm{\mathrm{ZH}}}$ and $\mathcal{B}$($\mathrm{H}$ -> $\mathrm{invisible}+\gamma$) as a function of $m_{\mathrm{\mathrm{H}}}$.

More…

Version 2
Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2020) 171, 2020.
Inspire Record 1747886 DOI 10.17182/hepdata.89937

A search is presented for additional scalar (H) or pseudoscalar (A) Higgs bosons decaying to a top quark pair in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected by the CMS experiment at the LHC. Final states with one or two charged leptons are considered. The invariant mass of the reconstructed top quark pair system and variables that are sensitive to the spin of the particles decaying into the top quark pair are used to search for signatures of the H or A bosons. The interference with the standard model top quark pair background is taken into account. A moderate signal-like deviation compatible with an A boson with a mass of 400 GeV is observed with a global significance of 1.9 standard deviations. New stringent constraints are reported on the strength of the coupling of the hypothetical bosons to the top quark, with the mass of the bosons ranging from 400 to 750 GeV and their total relative width from 0.5 to 25%. The results of the search are also interpreted in a minimal supersymmetric standard model scenario. Values of $m_\mathrm{A}$ from 400 to 700 GeV are probed, and a region with values of $\tan\beta$ below 1.0 to 1.5, depending on $m_\mathrm{A}$, is excluded at 95% confidence level.

20 data tables

Model-independent constraints on the coupling strength modifier as a function of the heavy scalar boson mass, for a relative width of 0.5%.

Model-independent constraints on the coupling strength modifier as a function of the heavy scalar boson mass, for a relative width of 1.0%.

Model-independent constraints on the coupling strength modifier as a function of the heavy scalar boson mass, for a relative width of 2.5%.

More…

Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2019) 062, 2019.
Inspire Record 1744608 DOI 10.17182/hepdata.91970

A search is presented for three additional operators that would lead to anomalous WW$\gamma$ or WWZ couplings with respect to those in the standard model. They are constrained by studying events with two vector bosons; a W boson decaying to e$\nu$ or $\mu\nu$, and a W or Z boson decaying hadronically, reconstructed as a single, massive, large-radius jet. The search uses a data set of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Using the reconstructed diboson invariant mass, 95% confidence intervals are obtained for the anomalous coupling parameters of $-1.58< c_\mathrm{WWW}/\Lambda^2$ $<$ 1.59 TeV$^{-2}$, $-$2.00 $<$ $c_\mathrm{W}/\Lambda^2$ $<$ 2.65 TeV$^{-2}$, and $-$8.78 $<$ $c_\mathrm{B}/\Lambda^2$ $<$ 8.54 TeV$^{-2}$, in agreement with standard model expectations of zero for each parameter. These are the strictest bounds on these parameters to date.

8 data tables

aTGC limits on EFT parameters in lepton + jet events in WW and WZ production

aTGC limits in LEP parametrization in lepton + jet events in WW and WZ production

2-dimensional aTGC limits in lepton + jet events in WW and WZ production

More…

Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at $\sqrt{s}=13\,\text {Te}\text {V}$

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 370, 2020.
Inspire Record 1744604 DOI 10.17182/hepdata.93068

A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.

69 data tables

Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$

Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$

Differential absolute cross section as a function of the parton-level top quark rapidity

More…

Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 800 (2020) 135087, 2020.
Inspire Record 1744267 DOI 10.17182/hepdata.90694

A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.

1 data table

Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> tautautautau) as a function of m(a) obtained from the 13 TeV data, where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and (a) denotes a light Higgs-like state.


Measurement of the top quark polarization and $\mathrm{t\bar{t}}$ spin correlations using dilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 100 (2019) 072002, 2019.
Inspire Record 1742786 DOI 10.17182/hepdata.90640

Measurements of the top quark polarization and top quark pair ($\mathrm{t\bar{t}}$) spin correlations are presented using events containing two oppositely charged leptons (e$^+$e$^-$, e$^\pm\mu^\mp$, or $\mu^+\mu^-$) produced in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were recorded by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A set of parton-level normalized differential cross sections, sensitive to each of the independent coefficients of the spin-dependent parts of the $\mathrm{t\bar{t}}$ production density matrix, is measured for the first time at 13 TeV. The measured distributions and extracted coefficients are compared with standard model predictions from simulations at next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD), and from NLO QCD calculations including electroweak corrections. All measurements are found to be consistent with the expectations of the standard model. The normalized differential cross sections are used in fits to constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark to $-$0.24 $<C_\text{tG}/\Lambda^{2}$ $<$ 0.07 TeV$^{-2}$ and $-$0.33 $< C^{I}_\text{tG}/\Lambda^{2}$ $<$ 0.20 TeV$^{-2}$, respectively, at 95% confidence level.

29 data tables

Figure 4, normalized differential cross section for $\cos\theta_{1}^{k}$

Figure 4, normalized differential cross section for $\cos\theta_{2}^{k}$

Figure 4, normalized differential cross section for $\cos\theta_{1}^{r}$

More…

Search for MSSM Higgs bosons decaying to μ + μ − in proton-proton collisions at s=13TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 798 (2019) 134992, 2019.
Inspire Record 1742776 DOI 10.17182/hepdata.90684

A search is performed for neutral non-standard-model Higgs bosons decaying to two muons in the context of the minimal supersymmetric standard model (MSSM). Proton-proton collision data recorded by the CMS experiment at the CERN Large Hadron Collider at a center-of-mass energy of 13 TeV were used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is sensitive to neutral Higgs bosons produced via the gluon fusion process or in association with a $\mathrm{b\overline{b}}$ quark pair. No significant deviations from the standard model expectation are observed. Upper limits at 95% confidence level are set in the context of the $m_\mathrm{h}^{\text{mod+}}$ and phenomenological MSSM scenarios on the parameter $\tan\beta$ as a function of the mass of the pseudoscalar A boson, in the range from 130 to 600 GeV. The results are also used to set a model-independent limit on the product of the branching fraction for the decay into a muon pair and the cross section for the production of a scalar neutral boson, either via gluon fusion, or in association with b quarks, in the mass range from 130 to 1000 GeV.

6 data tables

The 95% CL upper limits on tanb as a function of mA for the mhmod plus MSSM scenario

The 95% CL upper limits on tanb as a function of mA for the hMSSM scenario

The 95% CL upper limits on the production cross section times the branching fraction as a function of mA in the case of a b-associated production

More…

Combined search for supersymmetry with photons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 801 (2020) 135183, 2020.
Inspire Record 1742099 DOI 10.17182/hepdata.88922

A combination of four searches for new physics involving signatures with at least one photon and large missing transverse momentum, motivated by generalized models of gauge-mediated supersymmetry (SUSY) breaking, is presented. All searches make use of proton-proton collision data at $\sqrt{s}=$ 13 TeV, which were recorded with the CMS detector at the LHC in 2016, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Signatures with at least one photon and large missing transverse momentum are categorized into events with two isolated photons, events with a lepton and a photon, events with additional jets, and events with at least one high-energy photon. No excess of events is observed beyond expectations from standard model processes, and limits are set in the context of gauge-mediated SUSY. Compared to the individual searches, the combination extends the sensitivity to gauge-mediated SUSY in both electroweak and strong production scenarios by up to 100 GeV in neutralino and chargino masses, and yields the first CMS result combining various SUSY searches in events with photons at $\sqrt{s}=$ 13 TeV.

17 data tables

Neutralino Branching Fraction in GGM scenario

Neutralino Mass in GGM scenario

Data from Figure 3 of the paper

More…