Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-18-026, 2024.
Inspire Record 2769284 DOI 10.17182/hepdata.147309

A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$$\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$$m_\mathrm{a}$$\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell=$ $\mu$,$\tau$) channels.

6 data tables

Post-fit BDT distributions in the WH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines WH20 GeV, WH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Post-fit BDT distributions in the ZH channel extracted with the ma = 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines ZH20 GeV and ZH60 GeV, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction B(H → aa → bbbb) = 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

Model independent 95% CL upper limits on σ(VH) B(H → aa → bbbb)/σ(SM) for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where “a” is a new pseudoscalar particle decaying through a → bb, and σ(SM) is the SM Higgs boson production cross section.

More…

Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-008, 2024.
Inspire Record 2764172 DOI 10.17182/hepdata.146013

A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

30 data tables

Expected profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Observed profiled likelihood on $f_{a2}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

Expected profiled likelihood on $f_{\Lambda1}$ using Approach 1. The signal strength modifiers are treated as free parameters. Axis scales are varied to improve the visibility of important features.

More…

Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks

The CMS collaboration
CMS-B2G-22-003, 2022.
Inspire Record 2081829 DOI 10.17182/hepdata.128973

A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb$^{-1}$ collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, $\kappa_{2V}$, excluding $\kappa_{2V}$ = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.

22 data tables

The data and fitted signal and background distributions for the $D_{b\overline{b}}$-subleading jet regressed mass for the ggF BDT event category 1. The SM $HH$ ($\kappa_{2V}=\kappa_{V}=\kappa_{\lambda}=1$) signal is scaled to the best fit signal strength $\mu=3.5$.

The distributions of the invariant mass of the $HH$ system after a background-only fit to the data, for the VBF low-purity, medium-purity, and high-purity categories. The VBF signal corresponds to $\kappa_{2V} = 0$, $\kappa_{V} = \kappa_{\lambda} = 1$, with the error bar indicating the prefit uncertainty.

Two-parameter profile likelihood test statistic ($-2\Delta\ln\mathcal{L}$) scan in data as a function of $\kappa_{\lambda}$ and $\kappa_{2V}$.

More…

Search for a heavy vector resonance decaying to a Z boson and a Higgs boson in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 688, 2021.
Inspire Record 1846987 DOI 10.17182/hepdata.101374

A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. Upper limits are derived on the production of a narrow heavy resonance Z', and a mass below 3.5 and 3.7 TeV is excluded at 95% confidence level in models where the heavy vector boson couples exclusively to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z' mass between 0.8 and 4.6 TeV, respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.

21 data tables

The product of signal acceptance and efficiency in the 0l categories for the signal produced via qqbar annihilation.

The product of signal acceptance and efficiency in the 2l categories for the signal produced via qqbar annihilation.

The product of signal acceptance and efficiency in the 0l categories for the signal produced via vector boson fusion.

More…