Precision measurement of the Z boson invisible width in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137563, 2023.
Inspire Record 2096380 DOI 10.17182/hepdata.130965

A precise measurement of the invisible width of the Z boson produced in proton-proton collisions at a center-of-mass energy of 13 TeV is presented using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The result is obtained from a simultaneous fit to kinematic distributions for two data samples of Z boson plus jets: one dominated by Z boson decays to invisible particles and the other by Z boson decays to muon and electron pairs. The invisible width is measured to be 523 $\pm$ 3 (stat) $\pm$ 16 (syst) MeV. This result is the first precise measurement of the invisible width of the Z boson at a hadron collider, and is the single most precise direct measurement to date, competitive with the combined result of the direct measurements from the LEP experiments.

2 data tables

Measured Z invisible width.

Systematic uncertainties on Z invisible width.


Measurement of differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration
CMS-SMP-19-009, 2022.
Inspire Record 2078067 DOI 10.17182/hepdata.115655

A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.

70 data tables

Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.

More…

Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\sqrt{s} = $ 13 TeV

The CMS collaboration Lee, Kyeongpil ; Jain, Sandhya ; Wang, Jin ; et al.
JHEP 12 (2021) 083, 2021.
Inspire Record 1895530 DOI 10.17182/hepdata.105880

A search for new top quark interactions is performed within the framework of an effective field theory using the associated production of either one or two top quarks with a Z boson in multilepton final states. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC. Five dimension-six operators modifying the electroweak interactions of the top quark are considered. Novel machine-learning techniques are used to enhance the sensitivity to effects arising from these operators. Distributions used for the signal extraction are parameterized in terms of Wilson coefficients describing the interaction strengths of the operators. All five Wilson coefficients are simultaneously fit to data and 95% confidence level intervals are computed. All results are consistent with the SM expectations.

4 data tables

Expected and observed 95% CL confidence intervals for all Wilson coefficients. The intervals are obtained by scanning over a single Wilson coefficient, while fixing the other Wilson coefficients to their SM values of zero.

Expected and observed 95% CL confidence intervals for all Wilson coefficients. The intervals for all five Wilson coefficients are obtained from a single fit, in which all Wilson coefficients are treated as free parameters.

Covariance between the Wilson coefficients (in units of TeV$^{-4}$), after the 5D fit to data.

More…

Study of Drell-Yan dimuon production in proton-lead collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 182, 2021.
Inspire Record 1849180 DOI 10.17182/hepdata.88292

Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.

28 data tables

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of dimuon invariant mass. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $15<m_{\mu\mu}<60$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $60<m_{\mu\mu}<120$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

More…

Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ as a function of transverse momentum and rapidity

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 750 (2015) 154-175, 2015.
Inspire Record 1359451 DOI 10.17182/hepdata.69285

Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

2 data tables

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.


Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 147, 2015.
Inspire Record 1332509 DOI 10.17182/hepdata.69869

Measurements of the differential and double-differential Drell-Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton-proton collision data at sqrt(s) = 8 TeV recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measured inclusive cross section in the Z peak region (60-120 GeV), obtained from the combination of the dielectron and dimuon channels, is 1138 +/- 8 (exp) +/- 25 (theo) +/- 30 (lumi) pb, where the statistical uncertainty is negligible. The differential cross section d(sigma)/d(m) in the dilepton mass range 15 to 2000 GeV is measured and corrected to the full phase space. The double-differential cross section d2(sigma)/d(m)d(abs(y)) is also measured over the mass range 20 to 1500 GeV and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at sqrt(s) = 7 and 8 TeV are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with FEWZ 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.

15 data tables

Absolute Drell-Yan cross section measurements in the Z peak region (60 < m < 120 GeV). The uncertainties in the measurements include the experimental and theoretical systematic sources and the uncertainty in the integrated luminosity. The statistical component is negligible.

The Drell-Yan differential pre-FSR cross section D(SIG)/DM as measured in the combined dilepton channel for the full phase space. Theoretical uncertainty on acceptance is included.

The Drell-Yan pre-FSR dilepton rapidity distribution D(SIG)/DABS(YRAP) within the detector acceptance, for the mass bin 20-30 GeV, as measured in the combined dilepton channel.

More…

Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2014) 120, 2014.
Inspire Record 1280529 DOI 10.17182/hepdata.64748

The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the CMS detector and correspond to an integrated luminosity of 5 inverse femtobarns. The Z(ll) + b-jets cross sections (where ll = mu mu or ee) are measured separately for a Z boson produced with exactly one b jet and with at least two b jets. In addition, a cross section ratio is extracted for a Z boson produced with at least one b jet, relative to a Z boson produced with at least one jet. The measured cross sections are compared to various theoretical predictions, and the data favour the predictions in the five-flavour scheme, where b quarks are assumed massless. The kinematic properties of the reconstructed particles are compared with the predictions from the MADGRAPH event generator using the PYTHIA parton shower simulation.

4 data tables

The cross section at the particle level for the production of a Z boson with exactly one b-jet.

The cross section at the particle level for the production of a Z boson with at least two b-jets.

The cross section at the particle level for the production of a Z boson with at least one b-jet.

More…

Measurement of inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 112 (2014) 191802, 2014.
Inspire Record 1280200 DOI 10.17182/hepdata.62698

A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}$ = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 inverse-picobarns. The measured total inclusive cross sections times branching fractions are $\sigma(pp \to WX) \times B(W \to l\nu)$ = 12.21 +/- 0.03 (stat) +/- 0.24 (syst) +/- 0.32 (lum) nb, and $\sigma(pp \to ZX) \times B(Z \to l^{+}l^{-})$ = 1.15 +/- 0.01 (stat) +/- 0.02 (syst) +/- 0.03 (lum) nb, for the dilepton mass in the range of 60 to 120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at $\sqrt{s}$ = 8 TeV.

6 data tables

W+ total and fiducial production cross sections times branching fractions.

W- total and fiducial production cross sections times branching fractions.

(W+ + W-) total and fiducial production cross sections times branching fractions.

More…

Studies of Jet Mass in Dijet and W/Z + Jet Events

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 05 (2013) 090, 2013.
Inspire Record 1224539 DOI 10.17182/hepdata.60335

Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.

74 data tables

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 220-300 GeV/c.

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 300-450 GeV/c.

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 450-500 GeV/c.

More…

Measurement of $W^+ W^-$ and $ZZ$ Production Cross Sections in $pp$ Collisions at $\sqrt{s} = 8 TeV$

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 721 (2013) 190-211, 2013.
Inspire Record 1215317 DOI 10.17182/hepdata.62680

The W+W- and ZZ production cross sections are measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC in data samples corresponding to an integrated luminosity of up to 5.3 inverse femtobarns. The measurements are performed in the leptonic decay modes W+W- to l' nu l'' nu and ZZ to 2l 2l', where l = e, mu and l'(l'') = e, mu, tau. The measured cross sections sigma(pp to W+W-) = 69.9 +/- 2.8 (stat.) +/- 5.6 (syst.) +/- 3.1 (lumi.) pb and sigma(pp to ZZ) = 8.4 +/- 1.0 (stat.) +/- 0.7 (syst.) +/- 0.4 (lumi.) pb, for both Z bosons produced in the mass region 60 < m[Z] < 120 GeV, are consistent with standard model predictions. These are the first measurements of the diboson production cross sections at sqrt(s) = 8 TeV.

2 data tables

The measured cross section for W+ W- production performed in the W --> LEPTONPRIME NU mode where LEPTONPRIME is electron, muon or tau.

The measured cross section for Z0Z0 production performed in the Z0 --> LEPTON LEPTONPRIME mode where LEPTON is E or MU and LEPTONPRIME is E, MU or TAU.