Probing charm quark dynamics via multiparticle correlations in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ =5.02 TeV

The CMS & (CMS Collaboration)* collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 129 (2022) 022001, 2022.
Inspire Record 1996546 DOI 10.17182/hepdata.111310

Multiparticle azimuthal correlations of prompt D$^0$ mesons are measured in PbPb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. For the first time, a four-particle cumulant method is used to extract the second Fourier coefficient of the azimuthal distribution ($v_2$) of D$^0$ mesons as a function of event centrality and the D$^0$ transverse momentum. The ratios of the four-particle $v_2$ values to previously measured two-particle cumulant results provide direct experimental access to event-by-event fluctuations of charm quark azimuthal anisotropies. These ratios are also found to be comparable to those of inclusive charged particles in the event. However, hints of deviations are seen in the most central and peripheral collisions. To investigate the origin of flow fluctuations in the charm sector, these measurements are compared with models implementing fluctuations of charm quark energy loss via collisional or radiative processes in the quark-gluon plasma. These models cannot quantitatively describe the data over the full transverse momentum and centrality ranges, although the calculations with collisional energy loss provide a better description of the data.

3 data tables

Prompt $D^0+\overline{D}^0$ meson $v_2\{2\}$, $v_2\{4\}$, and $v_2\{4\}/v_2\{2\}$ as a function of $p_T$ from PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Prompt $D^0+\overline{D}^0$ meson $v_2\{2\}$, $v_2\{4\}$, and $v_2\{4\}/v_2\{2\}$ as a function of $p_T$ from PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Prompt $D^0+\overline{D}^0$ meson $v_2\{2\}$, $v_2\{4\}$, and $v_2\{4\}/v_2\{2\}$ as a function of centrality from PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.


Version 2
First search for exclusive diphoton production at high mass with tagged protons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The (TOTEM Collaboration)‡ & (CMS Collaboration)† & TOTEM & CMS collaborations Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Phys.Rev.Lett. 129 (2022) 011801, 2022.
Inspire Record 1942141 DOI 10.17182/hepdata.113659

A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp $\to$ p$\gamma\gamma$p with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb$^{-1}$ collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons matches the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% CL are $\lvert\zeta_1\rvert$ $\lt$ 2.9 $\times$ 10$^{-13}$ GeV$^{-4}$ and $\lvert\zeta_2\rvert$ $\lt$ 6.0 $\times$ 10$^{-13}$ GeV$^{-4}$.

12 data tables

Cut flow for the diphoton selection stages defined in the text (signal contribution is magnified by a factor 5000).

Cut flow for the diphoton selection stages defined in the text (signal contribution is magnified by a factor 5000).

Invariant mass distribution of the diphoton pairs for the elastic selection region with events satisfying a < 0.005 (signal contribution is magnified by a factor 5000).

More…

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Studies of beauty suppression via nonprompt D$^0$ mesons in PbPb collisions at $\sqrt{s_\mathrm{NN}}=$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 123 (2019) 022001, 2019.
Inspire Record 1700575 DOI 10.17182/hepdata.88297

The transverse momentum spectra of D$^0$ mesons from b hadron decays are measured at midrapidity ($|y|$ $<$ $1$) in pp and PbPb collisions at a nucleon-nucleon center of mass energy of 5.02 TeV with the CMS detector at the LHC. The D$^0$ mesons from b hadron decays are distinguished from prompt D$^0$ mesons by their decay topologies. In PbPb collisions, the B $\to$ D$^0$ yield is found to be suppressed in the measured $p_\mathrm{T}$ range from 2 to 100 GeV$/c$ as compared to pp collisions. The suppression is weaker than that of prompt D$^0$ mesons and charged hadrons for $p_\mathrm{T}$ around 10 GeV$/c$. While theoretical calculations incorporating partonic energy loss in the quark-gluon plasma can successfully describe the measured B $\to$ D$^0$ suppression at higher $p_\mathrm{T}$, the data show an indication of larger suppression than the model predictions in the range of 2 $\lt$ $p_\mathrm{T}$ $\lt$ 5 GeV$/c$.

4 data tables

$ {{{\mathrm {B}}}\to {\mathrm {D^0}}} $ $ {p_{\mathrm {T}}} $ -differential cross section in pp collisions at ${\sqrt {\smash [b]{s}}} = $ 5.02 TeV.

$ {{{\mathrm {B}}}\to {\mathrm {D^0}}} $ $ {p_{\mathrm {T}}} $ -differential invariant yield in PbPb collisions normalized with $ {T_{\mathrm {AA}}} $ at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV.

The $\text {data}/\mathrm {FONLL}$ ratio for the $ {{{\mathrm {B}}}\to {\mathrm {D^0}}} $ $ {p_{\mathrm {T}}} $ spectra in pp collisions.

More…

Measurement of the top quark pair production cross section in dilepton final states containing one $\tau$ lepton in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2020) 191, 2020.
Inspire Record 1767671 DOI 10.17182/hepdata.93743

The cross section of top quark pair production is measured in the $\mathrm{t\bar{t}}\to (\ell\nu_{\ell})(\tau_\mathrm{h}\nu_{\tau})\mathrm{b\bar{b}}$ final state, where $\tau_\mathrm{h}$ refers to the hadronic decays of the $\tau$ lepton, and $\ell$ is either an electron or a muon. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}=$ 13 TeV with the CMS detector. The measured cross section is $\sigma_{\mathrm{t\bar{t}}} =$ 781 $\pm$ 7 (stat) $\pm$ 62 (syst) $\pm$ 20 (lum) pb, and the ratio of the partial width $\Gamma($t$\to\tau\nu_{\tau}$b) to the total decay width of the top quark is measured to be 0.1050 $\pm$ 0.0009 (stat) $\pm$ 0.0071 (syst). This is the first measurement of the $\mathrm{t\bar{t}}$ production cross section in proton-proton collisions at $\sqrt{s}=$ 13 TeV that explicitly includes $\tau$ leptons. The ratio of the cross sections in the $\ell\tau_\mathrm{h}$ and $\ell\ell$ final states yields a value $R_{\ell\tau_\mathrm{h}/\ell\ell}=$ 0.973 $\pm$ 0.009 (stat) $\pm$ 0.066 (syst), consistent with lepton universality.

3 data tables

The measured inclusive top quark pair production cross section in the dilepton final state with one tau lepton.

The ratio between top quark production cross sections measured in lepton-tau and light dilepton final states.

The ratio of the partial width to the total decay width of the top quark.


Evidence for WW production from double-parton interactions in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 41, 2020.
Inspire Record 1753976 DOI 10.17182/hepdata.90950

A search for WW production from double-parton scattering processes using same-charge electron-muon and dimuon events is reported, based on proton-proton collision data collected at a center-of-mass energy of 13 TeV. The analyzed data set corresponds to an integrated luminosity of 77.4 fb$^{-1}$, collected using the CMS detector at the LHC in 2016 and 2017. Multivariate classifiers are used to discriminate between the signal and the dominant background processes. A maximum likelihood fit is performed to extract the signal cross section. This leads to the first evidence for WW production via double-parton scattering, with a significance of 3.9 standard deviations. The measured inclusive cross section is 1.41 $\pm$ 0.28 (stat) $\pm$ 0.28 (syst) pb.

1 data table

Observed value for inclusive same-sign WW production via DPS


A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 796 (2019) 131-154, 2019.
Inspire Record 1706172 DOI 10.17182/hepdata.91053

A search for new light bosons decaying into muon pairs is presented using a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the CERN LHC. The search is model independent, only requiring the pair production of a new light boson and its subsequent decay to a pair of muons. No significant deviation from the predicted background is observed. A model independent limit is set on the product of the production cross section times branching fraction to dimuons squared times acceptance as a function of new light boson mass. This limit varies between 0.16 and 0.45 fb over a range of new light boson masses from 0.25 to 8.5 GeV. It is then interpreted in the context of the next-to-minimal supersymmetric standard model and a dark supersymmetry model that allows for nonnegligible light boson lifetimes. In both cases, there is significant improvement over previously published limits.

11 data tables

The model independent 95% CL upper limit on cross section times branching ratio times acceptance

The model independent 90% CL upper limit on cross section times branching ratio times acceptance

NMSSM 95% CL upper limit on cross section times branching ratio

More…

Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

34 data tables

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles, after correcting for back-to-back jet correlations, estimated from the 10 $\leq$ $N_{offline}^{trk}$ < 20 range.

The second-order Fourier coefficients, $V_{3\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.

More…

Version 2
Search for disappearing tracks in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 806 (2020) 135502, 2020.
Inspire Record 1790827 DOI 10.17182/hepdata.95354

A search is presented for long-lived charged particles that decay within the volume of the silicon tracker of the CMS experiment. Such particles can produce events with an isolated track that is missing hits in the outermost layers of the silicon tracker, and is also associated with little energy deposited in the calorimeters and no hits in the muon detectors. The search for events with this "disappearing track" signature is performed in a sample of proton-proton collisions recorded by the CMS experiment at the LHC with a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 101 fb$^{-1}$ recorded in 2017 and 2018. The observation of 48 events is consistent with the estimated background of 47.8 $_{-2.3}^{+2.7}$ (stat) $\pm$ 8.1 (syst) events. Upper limits are set on chargino production in the context of an anomaly-mediated supersymmetry breaking model for purely wino and higgsino neutralino scenarios. At 95% confidence level, the first constraint is placed on chargino masses in the higgsino case, excluding below 750 (175) GeV for a lifetime of 3 (0.05) ns. In the wino case, the results of this search are combined with a previous CMS search to produce a result representing the complete LHC data set recorded in 2015-2018, the most stringent constraints to date. At 95% confidence level, chargino masses in the wino case are excluded below 884 (474) GeV for a lifetime of 3 (0.2) ns.

74 data tables

The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 0.3 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.

The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 0.3 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.

The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 3.3 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.

More…

Measurement of CKM matrix elements in single top quark $t$-channel production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 808 (2020) 135609, 2020.
Inspire Record 1792999 DOI 10.17182/hepdata.95117

The first direct, model-independent measurement is presented of the modulus of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_\mathrm{tb}|$, $|V_\mathrm{td}|$, and $|V_\mathrm{ts}|$, in final states enriched in single top quark $t$-channel events. The analysis uses proton-proton collision data from the LHC, collected during 2016 by the CMS experiment, at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Processes directly sensitive to these matrix elements are considered at both the production and decay vertices of the top quark. In the standard model hypothesis of CKM unitarity, a lower limit of $|V_\mathrm{tb}|$ $>$ 0.970 is measured at the 95% confidence level. Several theories beyond the standard model are considered, and by releasing all constraints among the involved parameters, the values $|V_\mathrm{tb}| =$ 0.988 $\pm$ 0.024, and $|V_\mathrm{td}|^2 + |V_\mathrm{ts}|^2 =$ 0.06 $\pm$ 0.06, where the uncertainties include both statistical and systematic components, are measured.

29 data tables

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

More…