Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1764474 DOI 10.17182/hepdata.91969

A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.

58 data tables

The 95% confidence level exclusion limits for the flavor-democratic scenario on the total production cross section of heavy fermion pairs.

The dimuon $M_{OSSF}^{20}$ distribution in the 4L($\mu\mu$) 0B, $S_{T}$<400 GeV signal region. The last bin does not contain the overflow events. The signal is shown with $g_{t}^2\mathcal{B}(\phi - {\mu\mu})$=0.05.

The dimuon $M_{OSSF}^{300}$ distribution in the 4L($\mu\mu$) 0B, $S_{T}$<400 GeV signal region. The last bin does not contain the overflow events. The signal is shown with $g_{t}^2\mathcal{B}(\phi - {\mu\mu})$=0.05.

More…

Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1761088 DOI 10.17182/hepdata.90685

A search is performed for a pseudoscalar Higgs boson, A, decaying into a 125 GeV Higgs boson h and a Z boson. The h boson is specifically targeted in its decay into a pair of tau leptons, while the Z boson decays into a pair of electrons or muons. A data sample of proton-proton collisions collected by the CMS experiment at the LHC at $\sqrt{s} =$ 13 TeV is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No excess above the standard model background expectations is observed in data. A model-independent upper limit is set on the product of the gluon fusion production cross section for the A boson and the branching fraction to Zh$\to\ell\ell\tau\tau$. The observed upper limit at 95% confidence level ranges from 27 to 5 fb for A boson masses from 220 to 400 GeV, respectively. The results are used to constrain the extended Higgs sector parameters for two benchmark scenarios of the minimal supersymmetric standard model.

1 data table

The expected and observed 95% CL model-independent upper limits on the product of the cross section and branching fraction for the A boson (pseudoscalar Higgs boson).


Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B798 (2019) 134985, 2019.
Inspire Record 1735737 DOI 10.17182/hepdata.89398

A search for anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected with the CMS detector. Events are selected by requiring two jets with large rapidity separation and invariant mass, one or two leptons (electrons or muons), and a W or Z boson decaying hadronically. No excess of events with respect to the standard model background predictions is observed and constraints on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators are reported. Stringent limits on parameters of the effective field theory operators are obtained. The observed 95% confidence level limits for the S0, M0, and T0 operators are $-$2.7 $<$ f$_{\mathrm{S0}}/ \Lambda^{4}$ $<$ 2.7, $-$1.0 $<$ f$_{\mathrm{M0}}/ \Lambda^{4}$ $<$ 1.0, and $-$0.17 $<$ f$_{\mathrm{T0}}/ \Lambda^{4}$ $<$ 0.16, in units of TeV$^{-4}$. Constraints are also reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass from 600 to 2000 GeV. The results are interpreted in the context of the Georgi-Machacek model.

10 data tables

Expected yields from various background processes in $\mathrm{WV}$ and $\mathrm{ZV}$ final states. The combination of the statistical and systematic uncertainties are shown. The predicted yields are shown with their best-fit normalizations from the background-only fit. The aQGC signal yields are shown for two aQGC scenarios with $f_{T2}/ \Lambda^{4} = -0.5$ TeV$^{-4}$ and $f_{T2}/ \Lambda^{4} = -2.5$ TeV$^{-4}$ for the $\mathrm{WV}$ and $\mathrm{ZV}$ channels, respectively. The charged Higgs boson signal yields are also shown for values of $s_{\mathrm{H}}=0.5$ and $m_{\mathrm{H}_{5}}=500$ GeV in the GM model. The statistical uncertainties are shown for the expected signal yields.

Observed and expected lower and upper 95\% CL limits on the parameters of the quartic operators S0, S1, M0, M1, M6, M7, T0, T1, and T2 in $\mathrm{WV}$ and $\mathrm{ZV}$ channels. The last two columns show the observed and expected limits for the combination of the $\mathrm{WV}$ and $\mathrm{ZV}$ channels.

$\mathrm{m_{\mathrm{ZV}}}$ distribution in the $\mathrm{ZV}$ channel. The predicted yields are shown with their best-fit normalizations from the background-only fit.

More…

Search for rare decays of Z and Higgs bosons to J$/\psi$ and a photon in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C79 (2019) 94, 2019.
Inspire Record 1700175 DOI 10.17182/hepdata.89175

A search is presented for decays of $\mathrm {Z}$ and Higgs bosons to a ${\mathrm {J}/\psi } $ meson and a photon, with the subsequent decay of the ${\mathrm {J}/\psi } $ to $\mathrm {\mu ^+}\mathrm {\mu ^-} $ . The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 $\,\text {fb}^{-1}$ at $\sqrt{s}=13\,\text {TeV} $ collected with the CMS detector at the LHC. The observed limit on the $\mathrm {Z}\rightarrow {\mathrm {J}/\psi } \gamma $ decay branching fraction, assuming that the ${\mathrm {J}/\psi } $ meson is produced unpolarized, is $1.4\times 10^{-6}$ at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from $-13.6$ to $+8.6\%$ with respect to the unpolarized scenario. The observed upper limit on the branching fraction for $\mathrm {H} \rightarrow {\mathrm {J}/\psi } \gamma $ where the ${\mathrm {J}/\psi } $ meson is assumed to be transversely polarized is $7.6\times 10^{-4}$ , a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at $\sqrt{s}=8\,\text {TeV} $ to produce an observed upper limit on the branching fraction for $\mathrm {H} \rightarrow {\mathrm {J}/\psi } \gamma $ that is a factor of 220 larger than the standard model value.

1 data table

Upper observed and expected limits on branching fraction of $Z (H)\rightarrow J/\psi\gamma$ decay of the $Z (H)$ boson.


Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1764471 DOI 10.17182/hepdata.91059

A search for narrow and broad resonances with masses greater than 1.8 TeV decaying to a pair of jets is presented. The search uses proton-proton collision data at $\sqrt{s}=$13 TeV collected at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The background arising from standard model processes is predicted with the fit method used in previous publications and with a new method. The dijet invariant mass spectrum is well described by both data-driven methods, and no significant evidence for the production of new particles is observed. Model independent upper limits are reported on the production cross sections of narrow resonances, and broad resonances with widths up to 55% of the resonance mass. Limits are presented on the masses of narrow resonances from various models: string resonances, scalar diquarks, axigluons, colorons, excited quarks, color-octet scalars, W' and Z' bosons, Randall-Sundrum gravitons, and dark matter mediators. The limits on narrow resonances are improved by 200 to 800 GeV relative to those reported in previous CMS dijet resonance searches. The limits on dark matter mediators are presented as a function of the resonance mass and width, and on the associated coupling strength as a function of the mediator mass. These limits exclude at 95% confidence level a dark matter mediator with a mass of 1.8 TeV and width 1% of its mass or higher, up to one with a mass of 4.8 TeV and a width 45% of its mass or higher.

10 data tables

The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for spin-1 resonances produced and decaying in the quark-quark channel, shown for various values of intrinsic width as a function of resonance mass.

The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for spin-2 resonances produced and decaying in the quark-quark channel, shown for various values of intrinsic width as a function of resonance mass.

The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for spin-2 resonances produced and decaying in the gluon-gluon channel, shown for various values of intrinsic width as a function of resonance mass.

More…

Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1744608 DOI 10.17182/hepdata.91970

A search is presented for three additional operators that would lead to anomalousWW$\gamma$ or WWZ couplings with respect to those in the standard model. They are constrained by studying events with two vector bosons; a W boson decaying to e$\nu$ or $\mu\nu$, and a W or Z boson decaying hadronically, reconstructed as a single, massive, large-radius jet. The search uses a data set of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Using the reconstructed diboson invariant mass, 95% confidence intervals are obtained for the anomalous coupling parameters of $-$1.58 $< c_\mathrm{WWW}/\Lambda^2 <$ 1.59 TeV$^{-2}$, $-$2.00 $< c_\mathrm{W}/\Lambda^2 <$ 2.65 TeV$^{-2}$, and $-$8.78$ < c_\mathrm{B}/\Lambda^2 <$ 8.54 TeV$^{-2}$, in agreement with standard model expectations of zero for each parameter. These are the strictest bounds on these parameters to date.

8 data tables

aTGC limits on EFT parameters in lepton + jet events in WW and WZ production

2-dimensional aTGC limits in lepton + jet events in WW and WZ production

aTGC limits in LEP parametrization in lepton + jet events in WW and WZ production

More…

Measurement of the single top quark and antiquark production cross sections in the t channel and their ratio in pp collisions at sqrt(s)=13 TeV

The CMS collaboration
No Journal Information, 2018.
Inspire Record 1680899 DOI 10.17182/hepdata.85704

The cross sections for the production of single top quarks and antiquarks in the $t$ channel, and their ratio, are measured in proton-proton collisions at a center-of-mass energy of $13~\mathrm{TeV}$. The full data set recorded in 2016 by the CMS detector at the LHC is analyzed, corresponding to an integrated luminosity of $35.9~\mathrm{fb}^{-1}$. Events with one muon or electron and two jets are selected, where one of the two jets is identified as originating from a bottom quark. A multivariate discriminator exploiting several kinematic variables is applied to separate signal from background events. The ratio $R_{t\mathrm{\text{-}ch.}}$ of the cross sections is measured to be $1.65 \pm0.02\,\text{(stat)} \pm0.04\,\text{(syst)}$. The total cross section for the production of single top quarks or antiquarks is measured to be $219.0 \pm1.5\,\text{(stat)} \pm33.0\,\text{(syst)} \,\mathrm{pb}$ and the absolute value of the CKM matrix element $V_{\mathrm{tb}}$ is determined to be $1.00 \pm0.05\,\text{(exp)} \pm0.02 \,\text{(theo)}$. All results are in agreement with the standard model predictions.

7 data tables

The measured cross section of top quark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured cross section of top antiquark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured inclusive cross section of production of the top quarks and antiquarks in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

More…

Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at $\sqrt{s} =$ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D99 (2019) 092005, 2019.
Inspire Record 1704945 DOI 10.17182/hepdata.90686

A search is presented for the production of a Higgs boson in association with a single top quark, based on data collected in 2016 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of 35.9  fb-1. The production cross section for this process is highly sensitive to the absolute values of the top quark Yukawa coupling, yt; the Higgs boson coupling to vector bosons, gHVV; and, uniquely, their relative sign. Analyses using multilepton signatures, targeting H→WW, H→ττ, and H→ZZ decay modes, and signatures with a single lepton and a bb¯ pair, targeting the H→bb¯ decay, are combined with a reinterpretation of a measurement in the H→γγ channel to constrain yt. For a standard model–like value of gHVV, the data favor positive values of yt and exclude values of yt below about -0.9ytSM.

2 data tables

Expected and observed 95% CL upper limits on the tH production cross section times $H \to WW/ZZ/\tau\tau/b\bar{b}/\gamma\gamma$ branching fraction for a scenario of inverted couplings ($\kappa_t=-1.0$ and $\kappa_V=1.0$, top rows), vanishing top quark Yukawa coupling ($\kappa_t=0.0$ and $\kappa_V=1.0$, middle rows), and for an SM-like signal ($\kappa_t=1.0$ and $\kappa_V=1.0$, bottom rows), in pb. The Higgs to vector boson couplings is considered to be SM-like. The expected limit is calculated on a background-only data set, i.e., without tH contribution, but including a coupling dependent contribution from the ttH production. The ttH normalization is kept fixed in the fit, while the tH cross section is allowed to float. Limits can be compared to the expected product of tH cross sections and branching fractions of 0.83, 0.28, and 0.077 pb for the inverted top quark Yukawa coupling, the vanishing top-Yukawa and the SM-like scenario.

Observed and expected 95% CL upper limit on the tH cross section times combined $HH \to WW/ZZ/\tau\tau/b\bar{b}/\gamma\gamma$ branching fraction for different values of the top-Yukawa coupling modifier, assuming SM-like Higgs to vector boson couplings. The expected limit is calculated on a background-only data set, i.e., without tH contribution, but including a coupling dependent contribution from the ttH production. The ttH normalization is kept fixed in the fit, while the tH cross section is allowed to float.


Search for new neutral Higgs bosons through the H$\to$ ZA $\to \ell^{+}\ell^{-} \mathrm{b\bar{b}}$ process in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1764795 DOI 10.17182/hepdata.90710

This paper reports on a search for an extended scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model.

10 data tables

Expected and observed 95% CL upper limits on the product of the production cross section and branching fraction for H(A) -> ZA(H) -> bbbar as a function of mA and mH. The limits are computed using the asymptotic CLs method, combining the ee and μμ channels.

Expected and observed 95% CL upper limits on the signal strength for the Type-II 2HDM benchmark (tan(beta)=1.5, cos(beta-alpha)=0.01) as a function of mA and mH . The limits are computed using the asymptotic CLs method, combining the ee and μμ channels.

Expected and observed 95% CL upper limits on the signal strength for the Type-II 2HDM benchmark (mH = 379 GeV and m A = 172 GeV) as a function of tan(beta) and cos(beta-alpha). The limits are computed using the asymptotic CLs method, combining the ee and μμ channels.

More…

Search for dijet resonances using events with three jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1764796 DOI 10.17182/hepdata.91058

A search for a narrow resonance with a mass between 350 and 700 GeV, and decaying into a pair of jets, is performed using proton-proton collision events containing at least three jets. The data sample corresponds to an integrated luminosity of 18.3 fb$^{-1}$ recorded at $\sqrt{s}=$ 13 TeV with the CMS detector. Data are collected with a technique known as "data scouting", in which the events are reconstructed, selected, and recorded at a high rate in a compact form by the high-level trigger. The three-jet final state provides sensitivity to lower resonance masses than in previous searches using the data scouting technique. The spectrum of the dijet invariant mass, calculated from the two jets with the largest transverse momenta in the event, is used to search for a resonance. No significant excess over a smoothly falling background is found. Limits at 95% confidence level are set on the production cross section of a narrow dijet resonance. The corresponding upper limits on the coupling of a narrow vector resonance interacting only with quarks are between 0.10 and 0.15, depending on the resonance mass. These results represent the most stringent upper limits in the mass range between 350 and 450 GeV obtained with a search that is sensitive to the decay of the resonance into light-flavor quarks.

6 data tables

Dijet mass spectrum (points) compared to a fitted parameterization of the background (solid curve), where the fit is performed in the range 290 < $m_{jj}$ < 1000 GeV in the background-only hypothesis. The horizontal bars show the widths of each bin in dijet mass. The dashed lines represent the dijet mass distribution from 400, 550, and 700 GeV resonance signals expected to be excluded at 95% CL by this analysis.

Acceptance for a vector resonance decaying into a dijet as a function of the resonance mass. The acceptance is calculated using signal simulations for the analysis selection, namely three wide jets with $p_{\mathrm{T}}$ > 72 GeV and |$\eta$| < 2.5, and |$\eta_{1}$ − $\eta_{2}$|<1.1. The errors are dominated by the uncertainties in the parton shower modeling used in signal simulations.

Comparison of the dijet mass distribution of the nominal selection (black), control selection without correction (red), and control selection with correction (blue) for data (solid histograms) and a simulation of a signal from a resonance with a mass of 400 GeV (dashed histograms). The correction, applied as a function of the product of the two largest jet transverse momenta in the event, is obtained as the ratio of the numbers of events passing the signal selection to those passing the control selection. For ease of readability, the dijet mass distributions of the signal have been scaled by an arbitrary factor. The bottom plot shows the relative difference between the dijet mass distributions of the data from the control and nominal selections. The yield of the uncorrected control selection for data is 95.7% of the nominal selection. The overlap between the two data selections is about 35% of the nominal selection. The yield of the uncorrected control selection for signal simulation of a 400-GeV resonance is about 50% of the nominal selection.

More…

Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C79 (2019) 773, 2019.
Inspire Record 1719955 DOI 10.17182/hepdata.89878

A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, $\varDelta \phi _{12}$ , is presented. The measurement considers events where the two leading jets are nearly collinear (“back-to-back”) in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of $13\,\text {Te}\text {V} $ and corresponding to an integrated luminosity of $35.9{\,\text {fb}^{-1}} $ are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region $177^\circ< \varDelta \phi _{12} < 180^\circ $ . The 2- and 3-jet measurements are not simultaneously described by any of models.

54 data tables

No description provided.

No description provided.

No description provided.

More…

Version 2
Search for dark photons in decays of Higgs bosons produced in association with Z bosons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1748735 DOI 10.17182/hepdata.89702

A search is presented for a Higgs boson that is produced in association with a Z boson and that decays to an undetected particle together with an isolated photon. The search is performed by the CMS Collaboration at the Large Hadron Collider using a data set corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded at a center-of-mass energy of 13 TeV. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for associated Higgs and Z boson production and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a mass of 125 GeV, assuming the standard model production cross section, this corresponds to an observed (expected) upper limit on this branching fraction of 4.6 (3.6)% at 95% confidence level. These are the first limits on Higgs boson decays to final states that include an undetected massless dark photon.

12 data tables

Observed yields, background estimates after the fit to data, and signal predictions after the event selection in the signal region. The signal size corresponds to $0.1 \sigma_{\mathrm{\mathrm{ZH}}}$ for all three $m_{\mathrm{\mathrm{H}}}$ values shown. The combined statistical and systematic uncertainties are reported.

Covariance matrix for all bins used in the analysis. There are 45 bins in total, 15 for every data-taking year. For every year, the first bin corresponds to events in the $\mathrm{e}\mu$ control region, the following five bins correspond to events with $|\eta^\gamma|< 1$ in the signal region, the next five bins correspond to events with $|\eta^\gamma|> 1$ in the signal region, the next two bins correspond to events in the WZ control region, and finally the last two bins correspond to events in the ZZ control region.

Electron reconstruction, identification, and isolation efficiency as a function of $|\eta|$ and $\mathrm{p_\mathrm{T}}$.

More…

Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1903 (2019) 141, 2019.
Inspire Record 1712378 DOI 10.17182/hepdata.88882

A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb$^{-1}$ recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95 % confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.

24 data tables

Background-only post-fit $p_{T}^{miss}$ distributions for the SRs of the AH selection. The total theory signal (t/t+DM and tt+DM summed together) is presented by the red solid lines for a scalar mediator mass of 100 GeV. The last bin contains overflow events.

Background-only post-fit $p_{T}^{miss}$ distributions for the SRs of the SL selection. The total theory signal (t/t+DM and tt+DM summed together) is presented by the red solid lines for a scalar mediator mass of 100 GeV. The last bin contains overflow events.

Background-only post-fit $p_{T}^{miss}$ distributions for the SRs of the SL selection. The total theory signal (t/t+DM and tt+DM summed together) is presented by the red solid lines for a scalar mediator mass of 100 GeV. The last bin contains overflow events.

More…

Measurement of the differential Drell-Yan cross section in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2018.
Inspire Record 1711625 DOI 10.17182/hepdata.88043

Measurements of the differential cross section for the Drell-Yan process, based on proton-proton collision data at a centre-of-mass energy of 13 TeV, collected by the CMS experiment, are presented. The data correspond to an integrated luminosity of 2.8 (2.3) fb$^{-1}$ in the dimuon (dielectron) channel. The total and fiducial cross section measurements are presented as a function of dilepton invariant mass in the range 15 to 3000 GeV, and compared with the perturbative predictions of the standard model. The measured differential cross sections are in good agreement with the theoretical calculations.

10 data tables

Summary of the systematic uncertainties (%) for the $ d\sigma / d{m}$ (pb/GeV) measurement in the dimuon channel. The column labelled "Total" corresponds to the quadratic sum of all the experimental sources, except for that Acceptance+PDF.

Summary of the systematic uncertainties (%) for the $ d\sigma / d{m}$ (pb/GeV) measurement in the dielectron channel. The column labelled "Total" corresponds to the quadratic sum of all the experimental sources, except for that Acceptance+PDF.

Summary of the measured values of $ d\sigma / d{m}$ (pb/GeV) in the dimuon channel with the statistical ($\delta_{\text{stat}}$), experimental ($\delta_{\text{exp}}$) and theoretical ($\delta_{\text{theo}}$) uncertainties, respectively. Here, $\delta_{\text{tot}}$ is the quadratic sum of the three components.

More…

Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1908 (2019) 150, 2019.
Inspire Record 1737508 DOI 10.17182/hepdata.88816

A search for supersymmetric particles produced in the vector boson fusion topology in proton-proton collisions is presented. The search targets final states with one or zero leptons, large missing transverse momentum, and two jets with a large separation in rapidity. The data sample corresponds to an integrated luminosity of 35.9 fb$^{−1}$ of proton-proton collisions at $ \sqrt{s} $ = 13 TeV collected in 2016 with the CMS detector at the LHC. The observed dijet invariant mass and lepton-neutrino transverse mass spectra are found to be consistent with the standard model predictions. Upper limits are set on the cross sections for chargino $ \left({\tilde{\upchi}}_1^{\pm}\right) $ and neutralino $ \left({\tilde{\upchi}}_2^0\right) $ production with two associated jets. For a compressed mass spectrum scenario in which the $ {\tilde{\upchi}}_1^{\pm } $ and $ {\tilde{\upchi}}_2^0 $ decays proceed via a light slepton and the mass difference between the lightest neutralino $ {\tilde{\upchi}}_1^0 $ and the mass-degenerate particles $ {\tilde{\upchi}}_1^{\pm } $ and $ {\tilde{\upchi}}_2^0 $ is 1 (30) GeV, the most stringent lower limit to date of 112 (215) GeV is set on the mass of these latter two particles.

20 data tables

Combined 95% CL expected upper limit on the signal cross section as a function of $m_{\tilde{\chi}_{2}^{0}}=m_{\tilde{\chi}_{1}^{\pm}}$ for a $\Delta m=1$ GeV mass gap between the chargino and the lightest neutralino in the $W Z$ model.

Combined 95% CL expected upper limit on the signal cross section as a function of $m_{\tilde{\chi}_{2}^{0}}=m_{\tilde{\chi}_{1}^{\pm}}$ for a $\Delta m=50$ GeV mass gap between the chargino and the lightest neutralino in the $W Z$ model.

Combined 95% CL observed upper limit on the signal cross section as a function of $m_{\tilde{\chi}_{2}^{0}}=m_{\tilde{\chi}_{1}^{\pm}}$ for a $\Delta m=1$ GeV mass gap between the chargino and the lightest neutralino in the $W Z$ model.

More…

Measurement of the top quark polarization and $\mathrm{t\bar{t}}$ spin correlations using dilepton final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1742786 DOI 10.17182/hepdata.90640

Measurements of the top quark polarization and top quark pair ($\mathrm{t\bar{t}}$) spin correlations are presented using events containing two oppositely charged leptons (e$^+$e$^-$, e$^\pm\mu^\mp$, or $\mu^+\mu^-$) produced in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were recorded by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A set of parton-level normalized differential cross sections, sensitive to each of the independent coefficients of the spin-dependent parts of the $\mathrm{t\bar{t}}$ production density matrix, is measured for the first time at 13 TeV. The measured distributions and extracted coefficients are compared with standard model predictions from simulations at next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD), and from NLO QCD calculations including electroweak corrections. All measurements are found to be consistent with the expectations of the standard model. The normalized differential cross sections are used in fits to constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark to -0.24 $<C_\text{tG}/\Lambda^{2} < $ 0.07 TeV$^{-2}$ and -0.33 $< C^{I}_\text{tG}/\Lambda^{2} < $ 0.20 TeV$^{-2}$, respectively, at 95% confidence level.

29 data tables

Figure 5, normalized differential cross section for $\cos\theta_{1}^{k*}$

Figure 4, normalized differential cross section for $\cos\theta_{1}^{k}$

Figure 6, normalized differential cross section for $\cos\theta_{1}^{k}\cos\theta_{2}^{k}$

More…

Measurement of the associated production of a single top quark and a Z boson in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B779 (2018) 358-384, 2018.
Inspire Record 1642230 DOI 10.17182/hepdata.81680

A measurement is presented of the associated production of a single top quark and a Z boson. The study uses data from proton–proton collisions at s=13TeV recorded by the CMS experiment, corresponding to an integrated luminosity of 35.9 fb −1 . Using final states with three leptons (electrons or muons), the tZq production cross section is measured to be σ(pp→tZq→Wbℓ+ℓ−q)=123−31+33(stat)−23+29(syst)fb , where ℓ stands for electrons, muons, or τ leptons, with observed and expected significances of 3.7 and 3.1 standard deviations, respectively.

1 data table

The measured cross section, with statistical and systematic uncertainties. The observed significance. The expected significance


Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B795 (2019) 398-423, 2019.
Inspire Record 1709317 DOI 10.17182/hepdata.91235

A search for exotic decays of the Higgs boson to a pair of light pseudoscalar particles a$_1$ is performed under the hypothesis that one of the pseudoscalars decays to a pair of opposite sign muons and the other decays to b$\overline{\mathrm{b}}$. Such signatures are predicted in a number of extensions of the standard model (SM), including next-to-minimal supersymmetry and two-Higgs-doublet models with an additional scalar singlet. The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated with the CMS experiment at the CERN LHC in 2016 at a centre-of-mass energy of 13 TeV. No statistically significant excess is observed with respect to the SM backgrounds in the search region for pseudoscalar masses from 20 GeV to half of the Higgs boson mass. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction, $\sigma_{\mathrm{h}}\mathcal{B}$(h $\to$ a$_1$ a$_1$ $\to$ $\mu^+\mu^-\mathrm{b}\bar{\mathrm{b}}$), ranging from 5 to 33 fb, depending on the pseudoscalar mass. Corresponding limits on the branching fraction, assuming the SM prediction for $\sigma_{\mathrm{h}}$, are (1$-$7)$\times$ 10$^{-4}$.

2 data tables

Observed and expected upper limits at 95% CL on the product of the Higgs boson production cross section and B(h->aa->mumubb)

Observed and expected upper limits at 95% CL on the branching fraction of (h->aa->mumubb)


Search for Higgs and Z boson decays to J/$\psi$ or $\Upsilon$ pairs in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1736895 DOI 10.17182/hepdata.90709

A search for decays of the Higgs and Z boson to pairs of J/$\psi$ or $\Upsilon$(nS) (n=1, 2, 3) mesons, with their subsequent decay to $\mu^+\mu^-$ pairs, is presented. The analysis uses data from proton-proton collisions at $\sqrt{s}=$ 13 TeV, collected with the CMS detector at the LHC in 2017 and corresponding to an integrated luminosity of 37.5 fb$^{-1}$. While an observation of such a decay with this sample would indicate the presence of physics beyond the standard model, no significant excess is observed. Upper limits at 95% confidence level are placed on the branching fractions of these decays. In the J/$\psi$ pair channel, the limits are 1.8$\times$10$^{-3}$ and 2.2$\times$10$^{-6}$ for the Higgs and Z boson, respectively, while in the combined $\Upsilon$(nS) pair channel, the limits are 1.4$\times$ 10$^{-3}$ and 1.5$\times$10$^{-6}$, respectively, when the mesons from the Higgs and Z boson decay are assumed to be unpolarized. When fully longitudinal and transverse polarizations are considered the limits reduce by about 22-29% and increase by about 10-13%, respectively.

1 data table

Exclusion limits at 95% CL for the branching fractions ($\mathcal{B}$s) of the $H$ and $Z$ boson decays to $J/\psi$ or $\Upsilon$ mesons pairs. The second column lists the observed limits. The third column shows the median expected limits with the upper and lower bounds in the expected 68% CL intervals.


Version 2
Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with e$\mu\mu$ or $\mu\mu\mu$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 123 (2019) 131802, 2019.
Inspire Record 1735729 DOI 10.17182/hepdata.89938

A search for a light charged Higgs boson (H$^+$) decaying to a W boson and a CP-odd Higgs boson (A) in final states with e$\mu\mu$ or $\mu\mu\mu$ is performed using data from pp collisions at $\sqrt{s}=$ 13 TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. In this search, it is assumed that the H$^+$ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H$^+$ boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H$^+$ boson is found. Upper limits at 95% confidence level are obtained on the combined branching fraction for the decay chain t $\to$ bH$^+$ $\to$ bW$^+$A $\to$ bW$^+\mu^+\mu^-$, of 1.9 $\times$ 10$^{-6}$ to 8.6 $\times$ 10$^{-6}$, depending on the masses of the H$^+$ and A bosons. These are the first limits for these decay modes of the H$^+$ and A bosons.

2 data tables

Expected and observed upper limits at 95% CL on $\mathcal{B}_{sig}=\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ for the A boson masses ($\mathit{m}_{\mathrm{A}}$). The $\mathrm{H^{+}}$ boson mass is assumed to be $\mathit{m}_{\mathrm{A}}$+85 GeV in the calculation.

Expected and observed upper limits at 95% CL on $\mathcal{B}_{sig}=\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ for the A boson masses ($\mathit{m}_{\mathrm{A}}$). The $\mathrm{H^{+}}$ boson mass is assumed to be 160 GeV in the calculation.


Search for $W$ boson decays to three charged pions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 151802, 2019.
Inspire Record 1717867 DOI 10.17182/hepdata.90000

For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3  fb-1, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01×10-6 is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.

3 data tables

Expected and observed 95% CL upper limits on the branching fraction of the W boson to 3 charged pions, using 2016 and 2017 data

Expected and observed 95% CL upper limits on the branching fraction of the W boson to 3 charged pions, using 2016 data

Expected and observed 95% CL upper limits on the branching fraction of the W boson to 3 charged pions, using 2017 data


Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1747886 DOI 10.17182/hepdata.89937

A search is presented for additional scalar (H) or pseudoscalar (A) Higgs bosons decaying to a top quark pair in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected by the CMS experiment at the LHC. Final states with one or two charged leptons are considered. The invariant mass of the reconstructed top quark pair system and variables that are sensitive to the spin of the particles decaying into the top quark pair are used to search for signatures of the H or A bosons. The interference with the standard model top quark pair background is taken into account. A moderate signal-like deviation compatible with an A boson with a mass of 400 GeV is observed with a global significance of 1.9 standard deviations. New stringent constraints are reported on the strength of the coupling of the hypothetical bosons to the top quark, with the mass of the bosons ranging from 400 to 750 GeV and their total relative width from 0.5 to 25%. The results of the search are also interpreted in a minimal supersymmetric standard model scenario. Values of $m_\mathrm{A}$ from 400 to 700 GeV are probed, and a region with values of $\tan\beta$ below 1.0 to 1.5, depending on $m_\mathrm{A}$, is excluded at 95% confidence level.

13 data tables

Exclusion in the (mA, tan beta) plane of the hMSSM. Both H and A boson signals are included with masses and widths that correspond to a given point in the plane.

Model-independent constraints on the coupling strength modifier as a function of the heavy scalar boson mass, for a relative width of 0.5%.

Model-independent constraints on the coupling strength modifier as a function of the heavy scalar boson mass, for a relative width of 1.0%.

More…

Version 2
Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B797 (2019) 134876, 2019.
Inspire Record 1740108 DOI 10.17182/hepdata.90583

A search for long-lived particles decaying to displaced, nonprompt jets and missing transverse momentum is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC in 2016-2018. Candidate signal events containing nonprompt jets are identified using the timing capabilities of the CMS electromagnetic calorimeter. The results of the search are consistent with the background prediction and are interpreted using a gauge-mediated supersymmetry breaking reference model with a gluino next-to-lightest supersymmetric particle. In this model, gluino masses up to 2100, 2500, and 1900 GeV are excluded at 95% confidence level for proper decay lengths of 0.3, 1, and 100 m, respectively. These are the best limits to date for such massive gluinos with proper decay lengths greater than $\sim$0.5 m.

28 data tables

The distribution (normalized to unity) of number of ECAL cells hit in the jet for jets in a background enriched data sample (satisfying $|\eta| < 1.48$, $PV_{\rm track}^{\rm fraction} > 1/12$, $\mathrm{HEF} > 0.2$, $t_{\mathrm{jet}} < -3\,\mathrm{ns}$ and $E^{\mathrm{CSC}}_\mathrm{ECAL}/E_{\mathrm{ECAL}} < 0.8$) and for signal jets satisfying signal region requirements (except those on $E_{\mathrm{ECAL}}$ and $N^{\mathrm{cell}}_{\mathrm{ECAL}}$).

Selection efficiencies for the GMSB model with $m_{\tilde{g}}=1000$ and various proper decay lengths

Summary of the estimated number of background events.

More…

Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1744267 DOI 10.17182/hepdata.90694

A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.

1 data table

Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> tautautautau) as a function of m(a) obtained from the 13 TeV data, where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and (a) denotes a light Higgs-like state.


A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B796 (2019) 131-154, 2019.
Inspire Record 1706172 DOI 10.17182/hepdata.91053

A search for new light bosons decaying into muon pairs is presented using a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the CERN LHC. The search is model independent, only requiring the pair production of a new light boson and its subsequent decay to a pair of muons. No significant deviation from the predicted background is observed. A model independent limit is set on the product of the production cross section times branching fraction to dimuons squared times acceptance as a function of new light boson mass. This limit varies between 0.16 and 0.45 fb over a range of new light boson masses from 0.25 to 8.5 GeV. It is then interpreted in the context of the next-to-minimal supersymmetric standard model and a dark supersymmetry model that allows for nonnegligible light boson lifetimes. In both cases, there is significant improvement over previously published limits.

11 data tables

The model independent 95% CL upper limit on cross section times branching ratio times acceptance

The model independent 90% CL upper limit on cross section times branching ratio times acceptance

NMSSM 95% CL upper limit on cross section times branching ratio

More…