Search for the production of W$^\pm$W$^\pm$W$^\mp$ events at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1734235 DOI 10.17182/hepdata.89176

A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb$^{-1}$. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W$^\pm$W$^\pm$W$^\mp$ production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34$^{+0.62}_{-0.34}$. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axion-like particles.

9 data tables

Lost-lepton and three-lepton background contributions.

Non-prompt lepton background estimates.

Summary of typical systematic uncertainties of estimated background contributions.

More…

Measurement of differential cross sections for Z boson pair production in association with jets at $\sqrt{s} =$ 8 and 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B789 (2019) 19-44, 2019.
Inspire Record 1680022 DOI 10.17182/hepdata.89171

This Letter reports measurements of differential cross sections for the production of two Z bosons in association with jets in proton-proton collisions at $\sqrt{s} =$ 8 and 13 TeV. The analysis is based on data samples collected at the LHC with the CMS detector, corresponding to integrated luminosities of 19.7 and 35.9 fb$^{-1}$ at 8 and 13 TeV, respectively. The measurements are performed in the leptonic decay modes ZZ $\to\ell^+ \ell^- \ell'^+ \ell'^-$, where $\ell,\ell' =$ e, $\mu$. The differential cross sections as a function of the jet multiplicity, the transverse momentum $p_\mathrm{T}$, and pseudorapidity of the $p_\mathrm{T}$-leading and subleading jets are presented. In addition, the differential cross sections as a function of variables sensitive to the vector boson scattering, such as the invariant mass of the two $p_\mathrm{T}$-leading jets and their pseudorapidity separation, are reported. The results are compared to theoretical predictions and found in good agreement within the theoretical and experimental uncertainties.

16 data tables

Data from Fig. 2 lower left panel. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ differential cross section at $\sqrt{s} = 8$ TeV as a function of the jet multiplicity with $|\eta| < 2.4$.

Data from Fig. 2 upper left. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ differential cross section at $\sqrt{s} = 8$ TeV as a function of the jet multiplicity with $|\eta| < 4.7$.

Data from Fig. 3 upper left panel. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ normalized differential cross section at $\sqrt{s} = 8$ TeV as a function of the jet multiplicity with $|\eta| < 4.7$.

More…

Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with e$\mu\mu$ or $\mu\mu\mu$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1735729 DOI 10.17182/hepdata.89938

A search for a light charged Higgs boson (H$^+$) decaying to a W boson and a CP-odd Higgs boson (A) in final states with e$\mu\mu$ or $\mu\mu\mu$ is performed using data from pp collisions at $\sqrt{s}=$ 13 TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. In this search, it is assumed that the H$^+$ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H$^+$ boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H$^+$ boson is found. Assuming branching fractions $\mathcal{B}$(H$^+ \to$ W$^+$A) $=$1 and $\mathcal{B}$(A $\to \mu\mu$)$ = $ 3 $\times$ 10$^{-4}$, upper limits at 95% confidence level on the branching fraction of the top quark, $\mathcal{B}$(t $\to$ bH$^+$), of 0.63 to 2.9% are obtained, depending on the masses of the H$^+$ aund A bosons. These are the first limits on $\mathcal{B}$(t $\to$ bH$^+$) in the decay mode of the H$^+$ boson: H$^+$ $\to$ W$^+$A $\to$ W$^+\mu^+\mu^-$.

2 data tables

Expected and observed upper limits at 95% CL on the branching fraction of the top quark, $\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})$, for the A boson masses ($\mathit{m}_{\mathrm{A}}$), with an assumption of the $\mathrm{H^{+}}$ boson mass $\mathit{m}_{\mathrm{H^{+}}}=\mathit{m}_{\mathrm{A}}$+85 GeV. In the calculation, the $t\overline{t}$ production cross section is set to 832 pb, and the branching fractions $\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ and $\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})$ are assumed to be $3\times10^{-4}$ and 1, respectively.

Expected and observed upper limits at 95% CL on the branching fraction of the top quark, $\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})$, for the A boson masses ($\mathit{m}_{\mathrm{A}}$), with an assumption of the $\mathrm{H^{+}}$ boson mass $\mathit{m}_{\mathrm{H^{+}}}$ = 160 GeV. In the calculation, the $t\overline{t}$ production cross section is set to 832 pb, and the branching fractions $\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ and $\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})$ are assumed to be $3\times10^{-4}$ and 1, respectively.


Search for nonresonant Higgs boson pair production in the $\mathrm{b\overline{b}b\overline{b}}$ final state at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1904 (2019) 112, 2019.
Inspire Record 1700771 DOI 10.17182/hepdata.89407

Results of a search for nonresonant production of Higgs boson pairs, with each Higgs boson decaying to a $\mathrm{b\overline{b}}$ pair are presented. This search uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, collected by the CMS detector at the LHC. No signal is observed, and a 95% confidence level upper limit of 847 fb is set on the cross section for standard model nonresonant Higgs boson pair production times the squared branching fraction of the Higgs boson decay to a $\mathrm{b\overline{b}}$ pair. The same signature is studied, and upper limits are set, in the context of models of physics beyond the standard model that predict modified couplings of the Higgs boson.

2 data tables

The observed and expected upper limits at 95% CL on the $\sigma$ (pp $\Rightarrow$ HH $\Rightarrow$ bbbb) cross section for SM and the 13 BSM models investigated.

95% CL cross section limits on $\sigma$ (pp $\Rightarrow$ HH $\Rightarrow$ bbbb) for values of $\kappa_\lambda$ in the [-20,20] range, assuming $\kappa_t = 1$; the theoretical prediction with $\kappa_t = 1$ is also shown.


Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV via Higgs boson decays to $\tau$ leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2018.
Inspire Record 1693616 DOI 10.17182/hepdata.87257

A search for the standard model Higgs boson, decaying to a pair of $\tau$ leptons and produced in association with a W or a Z boson is performed. A data sample of proton-proton collisions collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The signal strength is measured relative to the expectation for the standard model Higgs boson, yielding $\mu =$ 2.5$^{+1.4} _{-1.3}$. These results are combined with earlier CMS measurements targeting Higgs boson decays to a pair of $\tau$ leptons, performed with the same data set in the gluon fusion and vector boson fusion production modes. The combined signal strength is $\mu =$ 1.24$ ^{+0.29} _{-0.27}$ (1.00$^{+0.24} _{-0.23}$ expected), and the observed significance is 5.5 standard deviations (4.8 expected) for a Higgs boson mass of 125 GeV.

1 data table

Best fit signal strength per production mode, for mH = 125.09 GeV. The constraints from the global fit are used to extract each of the individual best fit signal strengths. The VH analyses are combined with the ggH and VBF analysis.


Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 121803, 2019.
Inspire Record 1704939 DOI 10.17182/hepdata.89935

This Letter describes a search for Higgs boson pair production using the combined results from four final states: bbγγ, bbττ, bbbb, and bbVV, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at s=13  TeV, corresponding to an integrated luminosity of 35.9  fb-1. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250–3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.

10 data tables

Expected and observed 95\% \CL exclusion limits on the HH production cross section as a function of the k_lambda parameter.

Expected and observed 95\% \CL exclusion limits on the production of a narrow, spin zero resonance (X) decaying into a pair of Higgs bosons.

Expected and observed 95\% \CL exclusion limits on the HH production cross section for the different channels and their combination for each benchmark model.

More…

Event shape variables measured using multijet final states in proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1812 (2018) 117, 2018.
Inspire Record 1701612 DOI 10.17182/hepdata.86517

The study of global event shape variables can provide sensitive tests of predictions for multijet production in proton-proton collisions. This paper presents a study of several event shape variables calculated using jet four momenta in proton-proton collisions at a centre-of-mass energy of 13 TeV and uses data recorded with the CMS detector at the LHC corresponding to an integrated luminosity of 2.2 fb$^{−1}$. After correcting for detector effects, the resulting distributions are compared with several theoretical predictions. The agreement generally improves as the energy, represented by the average transverse momentum of the two leading jets, increases.

32 data tables

Normalized differential distributions of unfolded data for $\tau_{\perp}$ for $73 < H_{T,2} < 93$ GeV

Normalized differential distributions of unfolded data for $\tau_{\perp}$ for $93 < H_{T,2} < 165$ GeV

Normalized differential distributions of unfolded data for $\tau_{\perp}$ for $165 < H_{T,2} < 225$ GeV

More…

Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $\sqrt{s}= $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C78 (2018) 566, 2018.
Inspire Record 1643640 DOI 10.17182/hepdata.86140

Azimuthal correlations between the two jets with the largest transverse momenta $ {p_{\mathrm{T}}} $ in inclusive 2-, 3-, and 4-jet events are presented for several regions of the leading jet $ {p_{\mathrm{T}}} $ up to 4 TeV. For 3- and 4-jet scenarios, measurements of the minimum azimuthal angles between any two of the three or four leading $ {p_{\mathrm{T}}} $ jets are also presented. The analysis is based on data from proton-proton collisions collected by the CMS Collaboration at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Calculations based on leading-order matrix elements supplemented with parton showering and hadronization do not fully describe the data, so next-to-leading-order calculations matched with parton shower and hadronization models are needed to better describe the measured distributions. Furthermore, we show that azimuthal jet correlations are sensitive to details of the parton showering, hadronization, and multiparton interactions. A next-to-leading-order calculation matched with parton showers in the MC@NLO method, as implemented in HERWIG 7, gives a better overall description of the measurements than the POWHEG method.

41 data tables

Normalized inclusive 2-jet cross section differential in $\Delta\phi_{1,2}$ for $200 < p_{T}^{max} < 300$ GeV

Normalized inclusive 2-jet cross section differential in $\Delta\phi_{1,2}$ for $300 < p_{T}^{max} < 400$ GeV

Normalized inclusive 2-jet cross section differential in $\Delta\phi_{1,2}$ for $400 < p_{T}^{max} < 500$ GeV

More…

Observation of nuclear modifications in W$^\pm$ boson production in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
No Journal Information, 2019.
Inspire Record 1733223 DOI 10.17182/hepdata.88284

The production of W$^\pm$ bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV. Measurements are performed in the W$^\pm \to \mu^\pm\nu_\mu$ channel using a data sample corresponding to an integrated luminosity of 173.4 $\pm$ 8.7 nb$^{-1}$, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame $|\eta^\mu_\mathrm{lab}| <$ 2.4 and transverse momentum $p_\mathrm{T}^\mu >$ 25 GeV/$c$. The W$^\pm$ boson differential cross sections, muon charge asymmetry, and the ratios of W$^\pm$ boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits.

7 data tables

Muon charge asymmetry, $(N_{\mu}^{+} - N_{\mu}^{-})/(N_{\mu}^{+} + N_{\mu}^{-})$, as a function of the muon pseudorapidity in the centre-of-mass frame.

Differential production cross sections for $\textrm{pPb} \to W^{+} + X \to \mu^{+} \nu + X$ for positively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

Differential production cross sections for $\textrm{pPb} \to W^{-} + X \to \mu^{-} \bar{\nu} + X$ for negatively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

More…

Measurement of differential cross sections for inclusive isolated-photon and photon+jets production in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C79 (2019) 20, 2019.
Inspire Record 1680459 DOI 10.17182/hepdata.89456

Measurements of inclusive isolated-photon and photon+jet production in proton–proton collisions at $\sqrt{s} = 13\,\text {TeV} $ are presented. The analysis uses data collected by the CMS experiment in 2015, corresponding to an integrated luminosity of 2.26 $\,\text {fb}^{-1}$ . The cross section for inclusive isolated photon production is measured as a function of the photon transverse energy in a fiducial region. The cross section for photon+jet production is measured as a function of the photon transverse energy in the same fiducial region with identical photon requirements and with the highest transverse momentum jet. All measurements are in agreement with predictions from next-to-leading-order perturbative QCD.

2 data tables

Double differential cross sections for isolated-photon production in photon rapidity bins. The cross section values are presented per photon transverse energy and rapidity unit.

Tripple differential cross sections for photon+jet production in photon and jet rapidity bins. The cross section values are presented per photon transverse energy, photon rapidity, and jet rapidity unit.


Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s}=$ 13 TeV using events containing two leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1902 (2019) 149, 2019.
Inspire Record 1703993 DOI 10.17182/hepdata.89307

Measurements of differential top quark pair $ \mathrm{t}\overline{\mathrm{t}} $ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{−1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $ \mathrm{t}\overline{\mathrm{t}} $ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $ \mathrm{t}\overline{\mathrm{t}} $ and leptonic charge asymmetries.

188 data tables

Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$.

More…

Measurement of the top quark mass in the all-jets final state at $\sqrt{s} =$ 13 TeV and combination with the lepton+jets channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C79 (2019) 313, 2019.
Inspire Record 1711672 DOI 10.17182/hepdata.89051

A top quark mass measurement is performed using $35.9{\,\text {fb}^{-1}} $ of LHC proton–proton collision data collected with the CMS detector at $\sqrt{s}=13\,\text {TeV} $ . The measurement uses the ${\mathrm {t}\overline{\mathrm {t}}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the ${\mathrm {t}\overline{\mathrm {t}}}$  system and suppress the multijet background. Using the ideogram method, the top quark mass ( $m_{\mathrm {t}}$ ) is determined, simultaneously constraining an additional jet energy scale factor ( $\text {JSF}$ ). The resulting value of $m_{\mathrm {t}} =172.34\pm 0.20\,\text {(stat+JSF)} \pm 0.70\,\text {(syst)} \,\text {GeV} $ is in good agreement with previous measurements. In addition, a combined measurement that uses the ${\mathrm {t}\overline{\mathrm {t}}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_{\mathrm {t}}$ measurement of $172.26\pm 0.07\,\text {(stat+JSF)} \pm 0.61\,\text {(syst)} \,\text {GeV} $ . This is the first combined $m_{\mathrm {t}}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.

1 data table

Measured top quark mass $m_{t}$


Version 2
Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J., 2018.
Inspire Record 1711260 DOI 10.17182/hepdata.85746

A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. Final states studied for $\mathrm{T\overline{T}}$ production include those where one of the T quarks decays via T$\to$tZ and the other via T$\to$bW, tZ, or tH, where H is a Higgs boson. For the $\mathrm{B\overline{B}}$ case, final states include those where one of the B quarks decays via B$\to$bZ and the other B$\to$tW, bZ, or bH. Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for T$\to$tZ, and B$\to$bZ, T and B quark mass values below 1280 and 1130 GeV, respectively, are excluded.

19 data tables

The $S_{\rm T}$ distribution for group A before fitting.

The $S_{\rm T}$ distribution for group B before fitting.

The $S_{\rm T}$ distribution for group C before fitting.

More…

Search for resonances decaying to a pair of Higgs bosons in the $\mathrm{b\overline{b}q\overline{q}'}\ell\nu$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP, 2019.
Inspire Record 1728701 DOI 10.17182/hepdata.88898

A search for new massive particles decaying into a pair of Higgs bosons in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed for resonances with a mass between 0.8 and 3.5 TeV using events in which one Higgs boson decays into a bottom quark pair and the other decays into two W bosons that subsequently decay into a lepton, a neutrino, and a quark pair. The Higgs boson decays are reconstructed with techniques that identify final state quarks as substructure within boosted jets. The data are consistent with standard model expectations. Exclusion limits are placed on the product of the cross section and branching fraction for generic spin-0 and spin-2 massive resonances. The results are interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. These are the best results to date from searches for an HH resonance decaying to this final state, and they are comparable to the results from searches in other channels for resonances with masses below 1.5 TeV.

2 data tables

Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.

Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.


Search for a low-mass $\tau^+\tau^-$ resonance in association with a bottom quark in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration
No Journal Information, 2019.
Inspire Record 1726509 DOI 10.17182/hepdata.88348

A general search is presented for a low-mass $\tau^+\tau^-$ resonance produced in association with a bottom quark. The search is based on proton-proton collision data at a center-of-mass energy of 13\TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The data are consistent with the standard model expectation. Upper limits at 95% confidence level on the cross section times branching fraction are determined for two signal models: a light pseudoscalar Higgs boson decaying to a pair of $\tau$ leptons produced in association with bottom quarks, and a low-mass boson A decaying to a $\tau$-lepton pair that is produced in the decay of a bottom-like quark B such that B$\to$bA. Masses between 25 and 70 GeV are probed for the light pseudoscalar boson with upper limits ranging from 250 to 44 pb. Upper limits from 20 to 0.3 pb are set on B masses between 170 and 450 GeV for A boson masses between 20 and 70 GeV.

18 data tables

The product of acceptance, efficiency, and branching fraction of $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with $\mathrm{A} \rightarrow \tau\tau$ in the $\mathrm{e}\tau_\mathrm{h}$ and $\mu\tau_\mathrm{h}$ channels of the 1 b tag event category, as a function of the pseudoscalar mass. The selections are as described in the paper. The uncertainty refers to the statistical uncertainty only.

Observed $m_{\tau\tau}$ distribution in the $\mathrm{e}\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.

Observed $m_{\tau\tau}$ distribution in the $\mu\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.

More…

Measurement of the WZ production cross section in pp collisions at $\sqrt{s} = 7$ and 8 $\,\text{TeV}$ and search for anomalous triple gauge couplings at $\sqrt{s} = 8\,\text{TeV} $

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J. C77 (2017) 236, 2017.
Inspire Record 1487288 DOI 10.17182/hepdata.89400

The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton–proton collision data samples corresponding to integrated luminosities of 4.9 $\,\text{fb}^{-1}$ collected at $\sqrt{s} = 7\,\text{TeV} $ , and 19.6 $\,\text{fb}^{-1}$ at $\sqrt{s} = 8\,\text{TeV} $ . The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for $71< m_{\mathrm{Z}} < 111\,\text{GeV} $ are $\sigma ({\mathrm{p}\mathrm{p}}\rightarrow {\mathrm{W}\mathrm{Z}},~\sqrt{s} = 7\,\text{TeV}) = 20.14 \pm 1.32\,\text{(stat)} \pm 0.38\,\text{(theo)} \pm 1.06\,\text{(exp)} \pm 0.44\,\text{(lumi)} $ $\,\text{pb}$ and $\sigma ({\mathrm{p}\mathrm{p}}\rightarrow {\mathrm{W}\mathrm{Z}},~\sqrt{s} = 8\,\text{TeV}) = 24.09 \pm 0.87\,\text{(stat)} \pm 0.80\,\text{(theo)} \pm 1.40\,\text{(exp)} \pm 0.63\,\text{(lumi)} $ $\,\text{pb}$ . Differential cross sections with respect to the $\mathrm{Z}$ boson $p_{\mathrm{T}}$ , the leading jet $p_{\mathrm{T}}$ , and the number of jets are obtained using the $\sqrt{s} = 8\,\text{TeV} $ data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.

5 data tables

The measured WZ cross section for 71 < mZ < 111 GeV using 7 TeV data. The theory uncertainty only includes QCD scales variations.

The measured WZ cross section for 71 < mZ < 111 GeV using 8 TeV data. The theory uncertainty only includes QCD scales variations.

Differential cross section as function of the Z boson transverse momentum.

More…

Constraints on anomalous HVV couplings from the production of Higgs bosons decaying to $\tau$ lepton pairs

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev., 2019.
Inspire Record 1725474 DOI 10.17182/hepdata.87255

A study is presented of anomalous HVV interactions of the Higgs boson, including its $CP$ properties. The study uses Higgs boson candidates produced mainly in vector boson fusion and gluon fusion that subsequently decay to a pair of $\tau$ leptons. The data were recorded by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A matrix element technique is employed for the analysis of anomalous interactions. The results are combined with those from the H$\to 4\ell$ decay channel presented earlier, yielding the most stringent constraints on anomalous Higgs boson couplings to electroweak vector bosons expressed as effective cross-section fractions and phases: the $CP$-violating parameter $f_{a3}\cos(\phi_{a3})=(0.00\pm0.27)\times10^{-3}$ and the $CP$-conserving parameters $f_{a2}\cos(\phi_{a2})=(0.08^{+1.04}_{-0.21})\times10^{-3}$, $f_{\Lambda1}\cos(\phi_{\Lambda1})=(0.00^{+0.53}_{-0.09})\times10^{-3}$, and $f_{\Lambda1}^{\mathrm{Z}\gamma}\cos(\phi_{\Lambda1}^{\mathrm{Z}\gamma})=(0.0^{+1.1}_{-1.3})\times10^{-3}$. The current data set does not allow for precise constraints on $CP$ properties in the gluon fusion process. The results are consistent with standard model expectations.

4 data tables

Observed and expected likelihood scans of $f_{\Lambda1}\cos\phi_{\Lambda1}$. See Section 4 of the paper for more details.

Observed and expected likelihood scans of $f_{\Lambda1}^{Z\gamma}\cos\phi_{\Lambda1}^{Z\gamma}$. See Section 4 of the paper for more details.

Observed and expected likelihood scans of $f_{a2}\cos\phi_{a2}$. See Section 4 of the paper for more details.

More…

Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 071802, 2018.
Inspire Record 1624166 DOI 10.17182/hepdata.83201

An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (pT) and decaying to a bottom quark-antiquark pair (bb¯) is performed using a data set of pp collisions at s=13  TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9  fb-1. A highly Lorentz-boosted Higgs boson decaying to bb¯ is reconstructed as a single, large radius jet, and it is identified using jet substructure and dedicated b tagging techniques. The method is validated with Z→bb¯ decays. The Z→bb¯ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of H→bb¯ with reconstructed pT>450  GeV and in the pseudorapidity range -2.5<η<2.5 is 74±48(stat)-10+17(syst) fb, which is consistent within uncertainties with the standard model prediction.

6 data tables

The $m_{SD}$ distributions in data for the failing (left) and passing (right) regions and combined $p_{T}$ categories. The QCD multijet background in the passing region is predicted using the failing region and the pass-fail ratio $R_{p/f}$. The features at 166 and 180 GeV in the $m_{SD}$ distribution are due to the kinematic selection on $\rho$, which affects each $p_{T}$ category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.

The $m_{SD}$ distributions in data for the failing (left) and passing (right) regions and combined $p_{T}$ categories. The QCD multijet background in the passing region is predicted using the failing region and the pass-fail ratio $R_{p/f}$. The features at 166 and 180 GeV in the $m_{SD}$ distribution are due to the kinematic selection on $\rho$, which affects each $p_{T}$ category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.

68% CL contour as a function of the Higgs and Z bosons signal strengths $(\mu_{H}, \mu_{Z})$.

More…

Observation of the Z$\to\psi\ell^+\ell^-$ decay in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 141801, 2018.
Inspire Record 1677496 DOI 10.17182/hepdata.85743

This Letter presents the observation of the rare Z boson decay Z $\to\psi\ell^+\ell^-$. Here, $\psi$ represents contributions from direct J/$\psi$ and $\psi$(2S) $\to$ J/$\psi X$, $\ell^+\ell^-$ is a pair of electrons or muons, and the J/$\psi$ meson is detected via its decay to $\mu^+\mu^-$. The sample of proton-proton collision data, collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The signal is observed with a significance in excess of 5 standard deviations. After subtraction of the $\psi$(2S) $\to$ J/$\psi X$ contribution, the ratio of the branching fraction of the exclusive decay Z $\to\psi\ell^+\ell^-$ to the decay Z $\to\mu^+\mu^-\mu^+\mu^-$ within a fiducial phase space is measured to be $\mathcal{B}($Z $\to\psi\ell^+\ell^-) / \mathcal{B}($Z $\to\mu^+\mu^-\mu^+\mu^-) =$ 0.67 $\pm$ 0.18 (stat) $\pm$ 0.05 (syst).

1 data table

branching fraction ratio of Z->J/psi+2 leptons over Z->4muons for the phase space defined above


Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $ \sqrt{s}=8 $ TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1802 (2018) 032, 2018.
Inspire Record 1641267 DOI 10.17182/hepdata.89148

A first search for same-sign WW production via double-parton scattering is performed based on proton-proton collision data at a center-of-mass energy of 8 TeV using dimuon and electron-muon final states. The search is based on the analysis of data corresponding to an integrated luminosity of 19.7 fb$^{−1}$. No significant excess of events is observed above the expected single-parton scattering yields. A 95% confidence level upper limit of 0.32 pb is set on the inclusive cross section for same-sign WW production via the double-parton scattering process. This upper limit is used to place a 95% confidence level lower limit of 12.2 mb on the effective double-parton cross section parameter, closely related to the transverse distribution of partons in the proton. This limit on the effective cross section is consistent with previous measurements as well as with Monte Carlo event generator predictions.

1 data table

Expected and observed upper limits on the cross section for inclusive same-sign WW production via DPS


Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D99 (2019) 032011, 2019.
Inspire Record 1704319 DOI 10.17182/hepdata.88880

A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9  fb-1. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or R-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300–2400 GeV and top squark masses up to 1350–1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.

18 data tables

The distributions of vertex track multiplicity for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.

The distributions of vertex $L_{xy}$ significance for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9 \mathrm{fb}^{-1} = 1 \times 10^{6}$.

The distributions of cluster RMS for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.

More…

Version 2
Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton–proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B774 (2017) 682-705, 2017.
Inspire Record 1615207 DOI 10.17182/hepdata.81936

A measurement of vector boson scattering and constraints on anomalous quartic gauge couplings from events with two Z bosons and two jets are presented. The analysis is based on a data sample of proton–proton collisions at s=13 TeV collected with the CMS detector and corresponding to an integrated luminosity of 35.9  fb−1 . The search is performed in the fully leptonic final state ZZ→ℓℓℓ′ℓ′ , where ℓ,ℓ′=e or μ . The electroweak production of two Z bosons in association with two jets is measured with an observed (expected) significance of 2.7 (1.6) standard deviations. A fiducial cross section for the electroweak production is measured to be σEW(pp→ZZjj→ℓℓℓ′ℓ′jj)=0.40−0.16+0.21(stat)−0.09+0.13(syst) fb , which is consistent with the standard model prediction. Limits on anomalous quartic gauge couplings are determined in terms of the effective field theory operators T0, T1, T2, T8, and T9. This is the first measurement of vector boson scattering in the ZZ channel at the LHC.

9 data tables

Measured and expected fiducial cross-sections.

Observed and expected exclusion limits for the aQGC parameters at 95% CL, without any form factors.

Data from Fig.4. Observed yields of four lepton invariant mass distribution. The last bin includes overflow.

More…

Electroweak production of two jets in association with a Z boson in proton–proton collisions at $\sqrt{s}= $ 13 $\,\text {TeV}$

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C78 (2018) 589, 2018.
Inspire Record 1645246 DOI 10.17182/hepdata.85867

A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s} = $ 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed in the $\ell\ell\mathrm{jj}$ final state with $\ell$ including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses $m_{\ell\ell} > $ 50 GeV, $m_{\mathrm{jj}} > $ 120 GeV, and transverse momenta $p_{\mathrm{T j}} > $ 25 GeV is $\sigma_\mathrm{EW}(\ell\ell\mathrm{jj})= $ 552 $\pm$ 19 (stat) $\pm$ 55 (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are $-2.6 < c_{WWW}/\Lambda^2 < 2.6 $ TeV$^{-2}$ and $-8.4 < c_{W}/\Lambda^2 < 10.1 $ TeV$^{-2}$. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.

14 data tables

The best fit signal strength for dielectron, dimuon and combined dilepton channels. The measurement is performed in a kinematic region defined by invariant masses $m_{ll}~>~50$ GeV, $m_{jj}~>~120$ GeV, and transverse momenta $p_{Tj}~>~25$ GeV, where $l$ denotes electrons and muons, and $j$ - quarks produced in the hard interaction.

One-dimensional limits on the ATGC EFT parameters at 95% CL

One-dimensional limits on the ATGC effective Lagrangian (LEP parametrization) parameters at 95% CL

More…

Version 2
Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev. D97 (2018) 112003, 2018.
Inspire Record 1663958 DOI 10.17182/hepdata.85696

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at s=13  TeV are measured as a function of kinematic variables of the top quarks and the top quark-antiquark (tt¯) system. In addition, kinematic variables and multiplicities of jets associated with the tt¯ production are measured. This analysis is based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.8  fb-1. The measurements are performed in the lepton+jets decay channels with a single muon or electron and jets in the final state. The differential cross sections are presented at the particle level, within a phase space close to the experimental acceptance, and at the parton level in the full phase space. The results are compared to several standard model predictions that use different methods and approximations. The kinematic variables of the top quarks and the tt¯ system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of next-to-leading-order calculations and parton shower models.

239 data tables

Absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

Covariance matrix of absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

Absolute cross section at particle level as a function of $|y(\text{t}_\text{h})|$.