Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2018) 100, 2018.
Inspire Record 1665223 DOI 10.17182/hepdata.89782

The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.

3 data tables

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.

Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.


Study of $W$ boson production in association with beauty and charm

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.D 92 (2015) 052001, 2015.
Inspire Record 1370436 DOI 10.17182/hepdata.73718

The associated production of a $W$ boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and $2.0\,{\rm fb}^{-1}$ collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The $W$ bosons are reconstructed using the $W\to\mu\nu$ decay and muons with a transverse momentum, $p_{\rm T}$, larger than 20 GeV in the pseudorapidity range $2.0<\eta<4.5$. The partons are reconstructed as jets with $p_{\rm T} > 20$ GeV and $2.2 < \eta < 4.2$. The sum of the muon and jet momenta must satisfy $p_{\rm T} > 20$ GeV. The fraction of $W+$jet events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the $W\!+\!b$ and $W\!+\!c$ production cross-sections. The ratio of the $W+$jet to $Z+$jet production cross-sections is also measured using the $Z\to\mu\mu$ decay. All results are in agreement with Standard Model predictions.

1 data table

Summary of the results. All results are reported within a fiducial region that requires a jet with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.2 < \eta < 4.2$, a muon with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.0 < \eta < 4.5$, $p_\rm{T}(\mu+j) > 20$ GeV, and $\Delta R(\mu, j) > 0.5$. For $Z+$jet events both muons must fulfill the muon requirements and $60 < M(\mu\mu) < 120$ GeV; the $Z+$jet fiducial region does not require $p_\rm{T}(\mu+j) > 20$ GeV.


Measurement of the forward $W$ boson cross-section in $pp$ collisions at $\sqrt{s} = 7 {\rm \, TeV}$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2014) 079, 2014.
Inspire Record 1311488 DOI 10.17182/hepdata.11760

A measurement of the inclusive $W \to \mu\nu$ production cross-section using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 7 {\rm \, TeV}$ is presented. The analysis is based on an integrated luminosity of about $1.0 {\rm \, fb}^{-1}$ recorded with the LHCb detector. Results are reported for muons with a transverse momentum greater than $20 {\rm \, Ge\kern -0.1em V\!/}c$ and pseudorapidity between 2.0 and 4.5. The $W^{+}$ and $W^{-}$ production cross-sections are measured to be $$\sigma_{W^{+} \to \mu^{+}\nu} = 861.0 \pm 2.0 \pm 11.2 \pm 14.7 {\rm \, pb},$$ $$\sigma_{W^{-} \to \mu^{-}\overline{\nu}} = 675.8 \pm 1.9 \pm 8.8 \pm 11.6 {\rm \, pb},$$ where the first uncertainty is statistical, the second is systematic and the third is due to the luminosity determination. Cross-section ratios and differential distributions as functions of the muon pseudorapidity are also presented. The ratio of $W^{+}$ to $W^{-}$ cross-sections in the same fiducial kinematic region is determined to be $$\frac{\sigma_{W^{+} \to \mu^{+}\nu}}{\sigma_{W^{-} \to \mu^{-}\overline{\nu}}} = 1.274 \pm 0.005 \pm 0.009,$$ where the uncertainties are statistical and systematic, respectively. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.

4 data tables

Correction for final state radiation for $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\bar{\nu}$ in bins of muon pseudorapidity. No loss due FSR is observed for $W^-$ in the last pseudorapidity bin because of lack of statistics.

Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic and luminosity.

Ratio of $W^+$ to $W^-$ cross-section in bins of muon pseudorapidity. The uncertainties are statistical and systematic.

More…

Observation of $Z$ production in proton-lead collisions at LHCb

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 09 (2014) 030, 2014.
Inspire Record 1300150 DOI 10.17182/hepdata.64260

The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.

2 data tables

The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.

The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.


Measurement of the relative rate of prompt $\chi_{c0}$, $\chi_{c1}$ and $\chi_{c2}$ production at $\sqrt{s}=7$TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 10 (2013) 115, 2013.
Inspire Record 1242869 DOI 10.17182/hepdata.66239

Prompt production of charmonium $\chi_{c0}$, $\chi_{c1}$ and $\chi_{c2}$ mesons is studied using proton-proton collisions at the LHC at a centre-of-mass energy of $\sqrt{s}=7$TeV. The $\chi_{c}$ mesons are identified through their decay to $J/\psi\gamma$, with $J/\psi\to\mu^+\mu^-$ using photons that converted in the detector. A data sample, corresponding to an integrated luminosity of $1.0\mathrm{fb}^{-1}$ collected by the LHCb detector, is used to measure the relative prompt production rate of $\chi_{c1}$ and $\chi_{c2}$ in the rapidity range $2.0

2 data tables

Measurements of the ratio of $\chi_{c2}$ to $\chi_{c1}$ production cross-sections for the given $J/\psi$ $p_T$ range assuming unpolarized $\chi_c$ production. The first uncertainty is statistical, the second is systematic, the third is from the branching fractions used and the last gives the maximum correction due to the unknown polarization.

Ratio of $\chi_{c0}$ to $\chi_{c2}$ in the observed $J/\psi$\ $p_T$ range from 4-20 GeV. Also given is the $\chi_{c2}$ to $\chi_{c1}$ ratio in the same PT range for comparison. The first systematic error is dominated by the photon efficiency,the $\chi_{c1}$ tail parameters and background modelling, the third from the choiceof $p_T$ spectrum and the fourth from the branching fraction uncertainty.


Production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
JHEP 06 (2013) 064, 2013.
Inspire Record 1230344 DOI 10.17182/hepdata.61706

The production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV is studied with the LHCb detector. The J/psi and Upsilon mesons are reconstructed in the mu+mu- decay mode and the signal yields are determined with a fit to the mu+mu- invariant mass distributions. The analysis is performed in the rapidity range 2.0<y<4.5 and transverse momentum range 0<p_T<14(15) GeV/c of the J/psi(Upsilon) mesons. The J/psi and Upsilon production cross-sections and the fraction of J/psi mesons from b-hadron decays are measured as a function of the meson p_T and y.

17 data tables

The total integrated cross sections for prompt J/PSI production, assuming no polarisation, and J/PSI production from b-hadron decays in the rapidity range 2.0-4.5 and transverse momentum 0-14 GeV/c;.

Differential production cross section in rapidity for prompt J/PSI mesons (assuming no polarisation) and from J/PSI from b-hadron decays.;.

The double-differential cross sections for prompt J/PSI production (assuming no polarisation) and production of J/PSI from b-hadron decays as a function of transverse momentum for the rapidity range 2.0-2.5. Also shown in the final column is the fraction (in %) of J/PSIs from the latter.

More…

Measurement of the ratio of prompt $\chi_{c}$ to $J/\psi$ production in $pp$ collisions at $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
Phys.Lett.B 718 (2012) 431-440, 2012.
Inspire Record 1107645 DOI 10.17182/hepdata.59360

The prompt production of charmonium $\chi_{c}$ and $J/\psi$ states is studied in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=7$ TeV at the Large Hadron Collider. The $\chi_{c}$ and $J/\psi$ mesons are identified through their decays $\chi_{c}\rightarrow J/\psi \gamma$ and $J/\psi\rightarrow \mu^+\mu^-$ using 36 pb$^{-1}$ of data collected by the LHCb detector in 2010. The ratio of the prompt production cross-sections for $\chi_{c}$ and $J/\psi$, $\sigma (\chi_{c}\rightarrow J/\psi \gamma)/ \sigma (J/\psi)$, is determined as a function of the $J/\psi$ transverse momentum in the range $2 &lt; p_{\mathrm T}^{J/\psi} &lt; 15$ GeV/$c$. The results are in excellent agreement with next-to-leading order non-relativistic expectations and show a significant discrepancy compared with the colour singlet model prediction at leading order, especially in the low $p_{\mathrm T}^{J/\psi}$ region.

1 data table

Ratio of cross sections for Chi_c to J/psi production in bins of J/psi transverse momentum over the J/psi rapidity range 2.0 to 4.5. The maximum uncertainties from the unknown Chi_c polarizations shown separately.


Measurement of the cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ for prompt $\chi_c$ production at $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Phys.Lett.B 714 (2012) 215-223, 2012.
Inspire Record 1087907 DOI 10.17182/hepdata.59352

The prompt production of the charmonium $\chi_{c1}$ and $\chi_{c2}$ mesons has been studied in proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The $\chi_c$ mesons are identified through their decays $\chi_c\to J/\psi\,\gamma$ with $J/\psi \to \mu^+ \mu^-$ using 36 $\mathrm{pb^{-1}}$ of data collected by the LHCb detector in 2010. The ratio of the prompt production cross-sections for the two $\chi_c$ spin states, $\sigma(\chi_{c2})/\sigma(\chi_{c1})$, has been determined as a function of the $J/\psi$ transverse momentum, $p_{\mathrm{T}}^{J/\psi}$, in the range from 2 to 15 GeV/$c$. The results are in agreement with the next-to-leading order non-relativistic QCD model at high $p_{\mathrm{T}}^{J/\psi}$ and lie consistently above the pure leading-order colour singlet prediction.

1 data table

Ratio of cross sections for $\chi_{c2}$ to $\chi_{c1}$ production in bins of $J/\psi$ transverse momentum over the $J/\psi$ rapidity range 2.0 to 4.5. The second systematic error represents the uncertainty in the $\chi_c \to J/\psi \gamma$ branching fractions with the maximum uncertainties from the unknown $\chi_c$ polarizations shown separately.